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Abstract

I study the size and scope determinants of innovation rate and quality for a large panel of U.S.
manufacturing firms. I employ known indicators of patent quality to show that quality-adjusted
patents per dollar of R&D fall with firm size. This finding is in line with previous research, and is
driven by the variation in patent counts rather than the variation in patent quality. In contrast,
firm size has no effect on the average quality of innovation at the firm level. Technological
diversity increases the quality-adjusted patent count on most of the diversity scale, but its
relationship with average quality is an inverted-U. The paper’s results are consistent with the
presence of a quality-quantity trade-off in innovation: As R&D intensity increases, the rate of
corporate innovation falls, but its average quality increases. Finally, I find that appropriability

conditions have a similar, non-linear effect on both the rate and quality of innovation.
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1 Introduction

The relationship between firm size and R&D productivity has been among the most intensely
debated questions in the economics of innovation. The discussion goes back to the writings of
Schumpeter (1942) and Galbraith (1952), who claimed that large firms with market power were
the primary engines of technological change. Schumpeter challenged the established views behind
anti-trust policy and static notions of allocative efficiency, claiming instead that the large firm with
market power was the primary engine of technological progress'.

In this article I investigate the effect of firm size and technological diversity on innovation for
a large panel of U.S. manufacturing firms. In contrast to many previous studies that looked at
the effect of size on the rate (quantity) of innovation at the firm level, I focus primarily on the
determinants of innovation quality. Previous authors found a negative relationship between firm
size and innovation productivity, as proxied by quantity indicators such as patents and innovation
counts (Bound et al, 1984; Acs and Audretsch, 1991a; among others). A key empirical finding is
that small firms obtain more patents (or significant innovations) per dollar of R&D expenditures
for most industries and on nearly the entire support of the firm size distribution?.

However, the rate at which innovations accrue says little about the actual value of a firm’s
innovative output. It is possible, for instance, for large firms to produce "better" and more impor-
tant innovations, while also producing them less frequently. In other words, large scale may create
advantages that improve the quality of innovation, if not its quantity. This article explores this
possibility, by jointly examining quantity and quality indicators for a firm’s patented innovations
in relation to firm size. The reason for studying technological diversity along with firm size is that
it is a key confounder in the size-innovation relationship, i.e., size advantages may be primarily due
to increased scope, and not increased scale (Cockburn and Henderson, 2001). The two issues are
intimately related in that while companies grow, the size and diversity of their activities increase
concurrently. Then, it is important to test whether scale and scope effects have productivity ef-

fects above and beyond that of the other. The strategy is also more useful to capture interesting

!This assertion became known as the Schumpeterian hypothesis, even though claims regarding size effects alone
do not appropriately capture Schumpeter’s claim on the conditions favorable to innovation in industrial R&D (Fisher
and Temin, 1973), while arguments related to the importance of firm size are more evident in Galbraith’s (1952)
writings. For responses from contemporaries of these authors, and an introduction to the discussion they initiated,
see Mason (1951) and Mueller (1957).

2Some authors found a positive relationship between size and productivity at the very top of the size distribution,
often due to a small number of very innovative and very large firms, indicating a U-shaped relationship between firm
size and innovativeness (Scherer, 1965; Pavitt, Robson and Townsend, 1987; Audretsch and Acs, 1991).



quantity-quality trade-offs that may be at work.

To study the determinants of innovation quality, I utilize a variety of indicators that can be used
as proxies for the quality of a firm’s patented innovations. These are (i) citations made to a given
patent, (i7) the index of "importance" developed by Trajtenberg et al (1997), which adds discounted
second generation citations (citations received by patents citing the patent in question) to a patent’s
citation total, and (4i) the patent quality index developed by Lanjuow and Schankerman (2004),
which extracts the common factor of a number of quality-related attributes. I take ample care to
ensure comparability of citations across time and across technology fields by normalizing citation
counts against meaningful benchmarks. Then, I study the determinants of quality-weighted patent
count obtained per dollar of R€ID expenditures (i.e., total quality/R&D), which can be considered
as a proxy for total output achieved per R&D dollar invested, and the determinants of the average
quality of patented innovations at the firm level.

It should be noted that this study looks at the effect of size and technological diversity on
innovation for the sample of firms that are already innovative (have at least one patent during the
year in question). It is established by a number of authors that the probability to innovate increases
with size. The same is true for the current sample of firms as well. Also, the study focuses on a large
panel of manufacturing firms that spans a large number of industries and technologies, hence seeks
results that are to a large extent generalizable. While heterogeneity across industries are expected
to exist, any structural relationship between variables of interest should be visible in aggregate
data, as long as one is careful while making comparisons across industries and technologies.

The rest of the paper is organized as follows. Section 2 presents a brief summary of the paper’s
main results. Section 3 outlines main theoretical arguments for scale and scope effects on innovation
and Section 4 presents a detailed review of the literature. Section 5 presents indicators of the rate
and quality of innovation used in the paper and discusses their merits and basic properties. Section
6 presents empirical specification and estimation strategy. Section 7 describes the data, Section 8

presents main results and Section 9 concludes the paper.

2 Summary of Results
It is useful to summarize the main findings of the paper before delving into details.

¢ Quality-weighted patent counts obtained per R&D dollar decrease with firm size. This finding

mirrors the previous literature on the firm size-innovation relationship that used simple patent



or innovation counts as output measures. I argue that this finding is driven by the variation
in patent counts, rather than the variation in patent quality. This is due to a problem with
merely counting citations: the problems with patent counts are simply transferred to the level
of total citations, hence the latter falls short of being an adequate quality indicator at the

firm level (Atallah and Rodriguez, 2006; Lanjuow and Schankerman, 2004).

e The relationship between quality-adjusted patents per R&D and technological diversity is
non-linear and it is best approximated by a cubic polynomial. The shape of the polynomial
indicates that total quality per R&D increases for most of the support of the diversity variable

as diversity increases.

e Firm size has no effect on average patent quality at the firm level. While large firms have
higher propensity to obtain highest quality patents, this is due to the size of their patent
cohorts, and not due to size differences per se. Innovation quality is randomly distributed

across firms of different sizes.

e Innovation quality has a large stochastic component, but it is not entirely random. It is
primarily affected by R&D intensity, technological diversity and appropriability conditions.
R&D intensity affects innovation quality positively, and the relationship between technological

diversity and innovation quality is an inverted-U.

e Results are consistent with a quality-quantity trade-off in innovation: Increased R&D inten-
sity results in fewer patented innovations per R&D dollar, but an increase in the average

quality of innovation.

e Appropriability conditions have similar effects on both the rate and quality of innovation,

which are consistent with an inverted-U pattern.

3 Theoretical Arguments

3.1 Innovation and size

Both the small and the large firm have their respective advantages in innovation. Large firm
advantage in innovation stems mostly from the control of, and access to material resources, while
small firms draw advantages from institutional and behavioral characteristics (Rothwell, 1989).

Most important large firm advantage is due to the presence of fixed costs and scale economies.



Galbraith (1952) writes "Because development is costly, it follows that it can be carried on only
by a firm that has the resources which are associated with considerable size." Comanor (1967),
Mansfield (1964) and Jewkes et al (1971) advance similar arguments. Cohen and Klepper (1996)
claim that large firms enjoy advantages in R&D due to a cost spreading effect, i.e., they command
a larger output over which they can apply the output of their R&D programs. Furthermore, large
firms tend to have diversified product lines and technological capabilities, which allow them to
better exploit unforeseen innovation opportunities and spread the risks of R&D into simultaneous
projects (Nelson, 1959; Henderson and Cockburn, 1996). Large firms also obtain easier access to
outside financing since it is difficult for a small firm to signal favorable future prospects (Galbraith,
1952; Hall, 2002). Finally, large firms are argued to enjoy advantages in the labor market, and hire
higher quality technical personnel (Idson and Oi, 1999; Kim, Lee and Marschke, 2009a).

On the other hand, large firms’ incentives and ability for innovation is hindered by an excess of
bureaucracy and unwieldy mechanisms of decision making. Scherer (1980) notes that bureaucracy
in large firms is not conducive to taking the necessary risks required for R&D, where projects
need to penetrate layers of risk-averse and conservative resistance. There is abundant anecdotal
evidence suggesting that large firms resist radical and disruptive change, and major innovations
are disproportionately produced by innovative small companies. Empirical evidence supports such
claims. Cooper (1964), interviewing 25 experienced development managers, finds that a given
product would cost three to ten times as much to develop in a larger firm than in a small one due
to excessive bureaucracy and red tape. Blair (1972) presents evidence that large firms underestimate
the demand for new items, neglect inputs from inventors, tend to be satisfied with the status quo
and prefer protecting investments in current technologies rather than innovate. A similar argument
is known in industrial organization as the replacement effect: Innovation entails replacing one’s
own technologies and cannibalizing its own profits, giving large firms poorer incentives to innovate
(Arrow, 1962; Reinganum, 1983). There is some evidence that small firms use external sources of
knowledge more effectively (Link and Rees, 1991) and benefit from spillovers from the university to
a greater degree than large firms (Acs, Audretsch and Feldman, 1994). In short, both the incentive
and the ability to produce high-quality innovation often require the flexible entrepreneurship of the
small firm. Also, it is often noted that small firms overcome size disadvantages and sustain high
quality innovation by concentration in strategic niches, which allow them to produce specialized

but sophisticated innovation (Agarwal and Audretsch, 1999; Pavitt et al, 1987).



3.2 Innovation and technological diversity

Technological diversity in innovating firms is often dictated by the nature, diversity and techno-
logical requirements of their production activities. Production of a single commodity increasingly
necessitates competence in a variety of related technologies, and so does expanding into new prod-
uct markets. Firms also diversify in order to exploit scope economies in R&D. Increased diver-
sification may internalize potential externalities between different but related fields and lead to
a cross-fertilization of ideas (Henderson and Cockburn, 1996). Previous research has shown that
firms do not diversify in a random fashion, but diversify into technologically related areas (Breschi,
Lissoni and Malerba, 2003). This suggests that firms’ diversification opportunities may be highly
constrained, but also that firms use diversification to capture complementarities between related re-
search fields. On the other hand, diversification may induce firms to forgo the benefits of increased
focus and specialization, i.e. the long term benefits of building higher comparative advantages in
specific fields. Diversification dilutes the firm’s financial and intellectual resources in each field
of activity, reducing potential benefits from scale economies within each technology. Hence, it is
natural to say that a firm faces a trade-off between increased scale of each R&D unit, and increased
scope of the company at large. Finally, diversification imposes higher coordination costs (Hender-
son and Cockburn, 1996; Hueng and Chen, 2010), but (to repeat) allow firms to spread the risks
of R&D into simultaneous projects (Nelson, 1959; Henderson and Cockburn, 1996).

4 Literature

4.1 Firm size and innovation

A number of distinct hypotheses were taken to data and were interpreted as tests of the Schum-
peterian hypothesis. An early line of literature focused on the relationship between firm size and
R&D expenditures at the firm level. These studies were primarily interested in whether R&D ex-
penditures, or R&D intensity grew at a more than proportionate rate along with firm size (usually
measured by total sales or employment). An elasticity of R&D with respect to size that is larger
(resp. smaller) than one, or a positive (resp. negative) relationship between R&D intensity and
firm size were interpreted as evidence supporting (resp. refuting) the Schumpeterian hypothesis.
With the increased availability of patent data, it became possible to use patent counts as indicators
of the output of R&D. A number of authors studied the relationship between R&D expenditures
and the number of patents granted to the firm. In a similar vein, the finding that the R&D elastic-



ity of patents was larger than one (resp. smaller than one) was interpreted as confirmation (resp.
repudiation) of Schumpeter?.

These earlier strands of the literature are best viewed as testing for the presence economies of
scale in R&D, either at the level of R&D investment decisions, or in the mechanisms by which R&D
inputs breed innovations. However, finding mere scale effects in either relationship falls short of
proving a direct link between firm size and the productivity of the R&D enterprise. A more precise
test of the Schumpeterian claim on firm size would ask the following question: Does the rate and/or
quality of innovations per R&D dollar (or R&D employment) increase or decrease with firm size?
Here I review studies test this assertion directly, and also some others that can be interpreted to
provide equivalent findings. By and large, the literature does not support Schumpeter’s thesis, and
often provides evidence that R&D productivity, as measured by counts of patents or innovations
per R&D dollar, falls with firm size.

Many authors studied the relationship between firm size and R&D productivity by using counts
of patents as proxy for the output of R&D. Scherer (1965) studied the relationship between patent-
ing and firm size for the 1955 cross section of 448 firms in the Fortune 500 survey. He found that
the number of patents increased less than proportionally with firm size for most of the sample,
with the exception of a small number of very large firms. He also found that the number of patents
per sales revenue decreased with firm sales. Johannisson and Lindstrom (1971) studied a sample
of 181 relatively large (500 employees or more) industrial firms in Sweden. They showed that large
firms’ share of patent applications was less than their share of employment for most of the sample.
Bound et al (1984) examined the 1976 cross section of around 2600 U.S. manufacturing firms and
found that smaller firms obtained a larger number of patents per dollar of R&D expenditures. For a
sample of large U.S. firms with sizeable R&D activities, Chakrabarti and Halperin (1990) reported
that patents and scientific papers per R&D dollar fell with firm size. Moreover, smaller firms in
their sample had a significantly larger patent-R&D ratio, but a lower paper-R&D ratio than larger
firms. Schwalbach and Zimmerman (1991) reported similar results for patent counts for a sample
of 143 German manufacturing firms. Kim and Marschke (2009) used panels of firms in the U.S.
semiconductor and pharmaceutical industries to show that patents per dollar of R&D expenditures
declined with firm size in both industries.

To obtain a more direct measure of the rate of innovation, a number of specialized databases of

innovations were compiled. The U.S. Small Business Administration Innovation Data Base (SBIDB)

3For a detailed review of these early lines of work, see Kamien and Schwartz (1975).



consisted of 8,074 innovations introduced to the U.S. market in 1982 and deemed significant by
industry experts. Another was constructed by the Science Policy Research Unit (SPRU) of the
University of Sussex, which included 4,378 significant innovations in the U.K. between 1945 and
1971. Two datasets were compiled by the Gellman Research Associates, one including 500 major
innovations introduced in six countries, and another containing 635 U.S. innovations.

Pavitt, Robson and Townsend (1987) used the SPRU database to show that both small (less
than 1000 employees) and large (more than 10.000 employees) firms produce a larger number of
innovations per employee than medium sized firms, leading to a U-shaped relationship between size
and innovation intensity. Freeman (1971) noted that small firms accounted for a larger proportion
of important innovations than their share of official R&D expenditures. A Gellman Research
Associates study revealed that small firms produced 2.5 times as many innovations per employee
than their larger counterparts (Bomberger, 1982). The SBIDB database produced remarkably
similar numbers for this same statistic, with small firms having 2.4 times as many innovations as
large firms (Edwards and Gordon, 1982). Audretsch and Acs (1991) found a U-shaped relationship
between the average number of innovations and firm size among firms grouped into size classes, and
a negative relationship between the number of innovations per employee and size throughout the
entire size spectrum. Acs and Audretsch (1991a) concluded that the data supported the hypothesis
of a negative innovation-firm size relationship as a general rule, except for a few very large firms.

While the rate of innovative activity received abundant attention, the literature is not com-
pletely silent on innovation quality, either. Innovation databases introduce a quality dimension by
identifying significant innovations as judged by industry experts. Hamberg (1966) and Jewkes et
al (1971) argue that large research labs are not responsible for the bulk of significant inventions.
Shimshoni (1970) documents that small firms in the scientific instruments industry played critical
roles in innovating several key instruments. A notable study on the food industry is undertaken by
Culbertson and Mueller (1980), who find that about half of all Putman Awards (which provides a
comprehensive compilation of the most significant innovations in food manufacturing) were granted
to small firms. These firms also received 44% of all awards designated as "top honors". Stock, Greis
and Fisher (2002) study the determinants of a direct quality attribute (the data transmission rate)
in the modem industry, finding that small firms market products that have faster transmission rates

in a given year compared to the products of large firms?.

“Note that this finding can be due to higher quality or higher speed-to-market, or merely a result of marketing
technologies prematurely.



A small number of studies have incorporated citations into empirical analysis of the size-
innovation relationship. Plehn-Dujowich (2009) finds that both patents and citations received
per R&D stock falls with firm size in a cross section of 1976 patents. Huang & Chen (2010) report
results which imply that citations received per R&D dollar falls with firm size. These papers are
similar to the current one in their attempts to account for the variation in innovation quality. These
studies, however, suffer from the drawbacks of using quality-adjusted patent counts, and do not
look into alternative quality measures. The current paper will argue that quality-adjusted patent
counts contain very little quality-related variation. They primarily reflect the variation in patent
counts, indicating that problems with patent counts are imposed in data to the level of citations

(Atallah and Rodriguez, 2006).

4.2 Technological diversity

There is a sizeable and rapidly growing literature on the determinants and consequences of cor-
porate technological diversity. For a panel of European firms covering the time interval between
1995 and 2000, Garcia-Vega (2006) shows that technological diversity affects R&D intensity and
the number of patents positively’. Granstrand and Oskarsson (1994) show that greater diversi-
fication is associated with greater sales and R&D growth. Miller (2006) finds that technological
diversity is positively associated with a number of performance measures. Quintana-Garcia and
Benavides-Velasco (2008) report that technological diversification is positively associated with both
"exploratory" and "exploitative" innovation, with a more pronounced effect on the former. Gam-
bardella and Torrisi (1998) finds that greater sales and profits are associated with higher techno-
logical diversity (but greater business focus). Nesta and Saviotti (2005) show that technological
diversification and coherence are positively associated with the number of patents granted to the
firm.

A number of papers have incorporated both scale and scope effects in studies of R&D pro-
ductivity. Henderson and Cockburn (1996) use data on the research program level to show that
large firms in pharmaceuticals are more innovative than small firms, owing to economies of scope
as well as economies of scale. Similar to the current paper, they explore nonlinearity with respect

to scope and find that both highly focused and highly diversified firms are less productive in re-

® Authors have used a number of diversity measures, which commonly are inverted concentration indexes, and less
often simpler ones such as the number of technological fields a firm is active in. These measures will be discussed in
Section 6.



search, implying an inverted-U. In a later study, Cockburn and Henderson (2001) use detailed data
on clinical research projects of 10 pharmaceutical companies. They find that the scale of R&D
positively affects the probability of success, but this effect is completely explained by the variation
in scope, i.e., the fact that larger development efforts are more diversified. I look at whether such
a mechanism can be discerned from the current sample with the innovation measures I am using.
Huang and Chen (2010) also discover an inverted-U shaped relationship between technological
diversity and the number of patents and citations. This article is closely related to the current one
both in their examination of possible nonlinearity between diversification and innovation, and their
use of citations to proxy innovation output. They use the total number of citations received by the

firm’s patents as a dependent variable in some specifications®.

5 Indicators of innovation rate and quality

The problems with using patent counts as indicators a firm’s innovative performance are well known
(see, for instance, Griliches, 1990). The number of patents per dollar of R&D is a combination
of two distinct effects: a productivity effect, indicating the rate at which R&D inputs produce
subsequent innovations, and a propensity effect, indicating the rate at which innovations generate
patent applications. It has been noted that industries differ greatly in their propensity to patent
(Scherer, 1983). Thus, it is not clear whether results are due to differences in R&D productivity
or differences in propensities to patent across economic units’. Finally, patent counts or stocks
treat all patents as homogenous (Cohen and Levin, 1989; Acs and Audretsch, 1991b), hence fail
to account for the value and significance of the underlying contribution. Using innovation counts
avoids the bias due to the heterogeneity in the propensity to patent across economic units, but
inherits the problem that all observed innovations are treated as homogenous, hence overlooks the
variation in the quality, significance, and impact of innovations, as patent counts.

This article aims to contribute to this discussion by employing measures of patent quality that
were not previously utilized in this line of inquiry. I use three different indicators to measure patent

quality; a normalized count of citations, the importance index of Trajtenberg et al (1997), and the

SThere is a growing line of literature that is interested in how firm diversify, which emphasizes the role of techno-
logical relatedness in firms’ diversification strategies. For an introduction, see MacDonald (1985), Teece et al (1994)
and Breschi, Lissoni and Malerba (2003). I also avoid a detailed discussion on the extant literature on the diversity of
product lines, which is indirectly related to the current topic in that product market and technological diversification
occur in conjunction with one another. On this topic, also see Pavitt et al (1987), Pavitt (1998) and Scott (1993).

"For attempts to identify these two effects separately, see de Rassenfosse (2010) and de Rassenfosse and van
Pottelsberghe de la Potterie (2009).
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quality index of Lanjuow and Schankerman (2004).

5.1 Citations

The number of citations made to a given patent is known to be good indicator of patent value
(Trajtenberg, 1990; Albert et al, 1991; Harhoff et al 1999, 2003). An important difficulty in using
citations in large panels is that raw citations do not immediately lend themselves to comparisons
across time or across technology fields. Citation counts exhibit variation across technology classes
and across time due to reasons not related to patent quality. In order to make meaningful com-
parisons across time and across technologies, it is necessary to standardize citation counts against
meaningful benchmarks. For this purpose, I normalize citations by dividing the citation count of
each patent by the third quartile (75th percentile) citation count of all patents in the same technol-
ogy class and with the same application year. Accounting for the variation across technology classes
ensures that idiosyncratic citation practices within technology fields are not guiding the paper’s
main results. It is also expected that patenting frequencies are different across technologies, which
may lead patents to make too many citations simply because there is more prior art to cite. Ac-
counting for the variation over time is necessary since citations have been increasing over time due
to "mechanical" reasons (such as the variation over time in the number of patents to cite, and the
strictness of patent examination procedures), leading to a non-quality related inflation in citations
(Hall, Jaffe and Trajtenberg, 2001).

Normalized citation counts measure the quality of a patent relative to all others in a technology
class-year pair. I prefer the 75th percentile to the median (which could perhaps appear as the
more natural choice) since citation counts have a skew distribution, and there are a large number
of technology class-year pairs with very low medians®. Normalization with respect to percentiles is
preferred to normalizing with respect to means since the latter are sensitive to the presence of large
outliers, while the former are not. Citation percentiles in comparison groups are calculated using
the entire sample of available (more than three million) USPTO patents, not just those that are
matched to corporations. Similar normalization procedures have been used in different contexts by
Goodall (2009) and Lettl et al (2009), even though careless application of raw citations is common.

Note that it isn’t a priori clear whether normalization will "favor" large or small firms. This

8Even though groups with zero medians are very few, medians representing one or two raw citations are common.
Normalizing using such low numbers can be misleding, hence higher percentiles are prefererred. Nevertheless, 1
experiment with scores using medians and the 90th percentile, which do not produce different results.

11



depends on the distribution of innovation activities of small and large firms across technology classes
that produce more frequent citations. To the extent that increased firm size implies a restructuring
of activity into fields that are more (or less) frequently cited, the more the two sets of results will
differ, and normalization will assure higher reliability. Conversely, to the extent the assignment of
firms into technological activities is random (independent of firm size and diversity), the two set of
analyses are expected to produce more similar results.

Another issue to be resolved is time truncation. Observed citation counts are truncated since
citations keep arriving long after the date of patent grant, but only a fraction of overall citations are
observed at the time of data collection. Hall, Jaffe and Trajtenberg (2001) correct for truncation by
estimating the distribution of citation lags. Once this distribution is estimated, one can approximate
the true citation count for an age-a patent by dividing the raw citation count by the fraction of
citations an average patent receives during the first a years after the application year. I correct raw
citation counts using the implied weights given in tables 6 through 8 in the same study. Note that
due this procedure, the number of corrected citations is no longer a count variable. During data
construction, citations are first corrected for truncation and the normalization procedure detailed
above is applied corrected citation scores.

Citation counts used in constructing quality measures are all are non-self citations, i.e., citations

that are made from a company to its prior patents are excluded.

5.2 Importance

In addition to normalized counts of citations, I also construct and use the measure of importance
developed by Trajtenberg, Henderson and Jaffe (1997). This measure counts citations received by
the patent, and adds to this a fraction of the sum of second generation citations, i.e., the number
citations received by patent’s citing antecedents. For patent p,

neiting®) Critations j (1)

Import, = Citations, + A~ ;74

where j = 1,..., nciting(p) indexes patents that cite p, and X is a discount factor that captures the
relative significance of second generation cites. Following Trajtenberg, Henderson and Jaffe (1997),
I choose A = 0.5, but also experiment with different A values. These analyses produce similar
results. All citation counts in the above formula are corrected for truncation before summation,

and the normalization procedure is applied to the importance measure itself. That is, importance

12



index for each patent is divided by the 75th percentile of the measure in its technology class and

application year.

5.3 Lanjuow and Schankerman quality index

Finally, I use a slight variant of the patent quality index proposed by Lanjuow and Schankerman
(2004) (henceforth LS). The original index extracts the common factor of five indicators of patent
quality and scope: citations received within five years of patent application, citations received
within five to ten years of patent application, backward citations (citations made by the patent),
the number of claims made by patent application, and family size (the number of countries the
innovation is patented in). Since I do not have access to large-scale data on family size for USPTO
patents, I extract the common factor of the remaining four indicators described above?. The index
was separately estimated for six aggregate technology classifications (Chemicals, Computers and
Communication, Drugs and Medical, Electric and Electronics, Mechanical, and Others) and was
subjected to the same normalization procedure described above. Truncation is not an issue here,

as the index uses citations received in fixed time windows.

5.4 On observable innovation indicators

I use all quality indicators to construct two different types of proxies for a firm’s innovative output.
The first is a quality-weighted patent count obtained per dollar of R&D expenditures, which can be
considered as a proxy for total output achieved per R&D dollar invested. The second is the average
quality of patented innovations at the firm level. Hence, a total of six quality-related measures will
be examined: average quality per patent (> Q/patents), where Q € {citations, importance, LS}
which will be called CP, IP and LSP, respectively. Quality-adjusted patents per R&D (> Q/R&D)
will be named analogously as CR, IR and LSR. For completeness and comparison, I will examine
the determinants of the patent-R&D ratio (PR) as well. For brevity, quality-adjusted patents per
R&D will be referred to as QR, while average patent quality will be termed QP.

To put various output measures utilized here and elsewhere in perspective, it is a good idea to
keep in mind the timeline of innovative activity, and observable indicators of innovation from its

different stages. It is instructive to look at the following natural decomposition of a quality-adjusted

9Lanjuow and Schankerman (2004) obtain family size for a random sample of a little over 100,000 patents, which
makes up a mere 20% of their entire sample of patents. Hence, including family size is impractical unless one wishes
to omit a large fraction of the patent database from the sample.
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patent count and the innovation indicators it "hides" within:

>Q Y Q PAT INN @)
R&D PAT INN R&D
N’

PAT/R&D

At the first stage of innovation, R&D investments are made. These investments lead to a number
of innovations (INN). If these innovations are observed, the number of innovations that results per
R&D dollar of expenditures (the third term in (2)) is a direct measure of output from this stage,
even though differences in the social or private values of these innovations aren’t observed. Some
innovations are patented, and patents per innovation (second term in (2)) is a measure of the firm’s
pure "propensity to patent". The second and the third term together produce the patent-R&D
ratio. Finally, the average quality of these patents (> Q/Patents) is an indicator of the average
value and impact of these patents. These three measures together produce total quality per R&D
dollar (>-Q/R&D).

An important advantage of using average quality is that it avoids the well documented problems
with reported R&D expenditures, especially with those of small firms (Kleinknecht, 1989). Also,
studying the variation in average quality offers a means to look at innovative output met of the
propensity to patent. That said, we directly inherit some of the problems with using patents as
output measures. Most importantly, one doesn’t observe quality indicators for unpatented (and

unpatentable) innovations.

6 Empirical specification

The main interest of the study lies on the effects of size and scope differences on innovation. The

baseline empirical model to be estimated is

log(yit) = v + aslog Sit + f (T'Dit; 0) + xi,8 + n; + 8¢ + wit (3)

10This decomposition also highlights a difference between an "ideal" output indicator and the indicators we actually
observe. Ideally, we would like to observe innovations at the firm level, along with a direct measure of the value of
these innovations. Since this is elusive, this study uses quality indicators of the value of patented innovations, rather
than that of the entire cohort of a firm’s inventive output. Patent quality can deviate from innovation quality to the
extent that a firm’s decision to patent an innovation is correlated with the expected value of the innovation.
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where y;; is a measure of the R&D productivity of firm i at year t, S;; is deflated sales'', T'D;
is a measure of technological diversity, and x;; is a vector of controls for the it (firm i, year t)
observation, including firm and industry characteristics, as well as characteristics of the firm’s
R&D organization and those of its patented innovations. I allow for nonlinearity with respect to
T D;; by approximating f with a polynomial expansion, where 8 is the vector of parameters in the
expansion. The error term 7; + d; + u; is the usual two-way error components specification that
includes an unobservable and time-invariant firm effect, as well as year effects. Year effects control
for the overall variation in productivity over time, which can occur due to aggregate economic
conditions, changes in the legal environment and innovation policy'?. It could be more desirable
to use lags of firm size and the spillover pool instead of their current values. Regressions with lags
of these variables produce estimates that are very similar to those with current values. Hence, 1
report results using current sales and spillovers to avoid the cost of losing an additional year of
observations.

Equation (3) is estimated by using measures of innovation performance described in the previous
section. A general-to-specific specification search is performed in order to account for possible
nonlinearity with respect sales, technological diversity and other key independent variables. For
all dependent variables used, as well as for sales, a Box-Cox test indicates that a logarithmic
transformation gives the best fit, which is natural for both skew and size-related variables. For all
specifications, a Hausman tests rejects the null hypothesis that permanent effects are random, hence
a fixed effects (within) specification is adopted. To account for a serially correlated component in w;;,
all equations are estimated after performing a correction for first order serial correlation (Bhargava,
Franzini and Narendranathan, 1982; Baltagi and Wu, 1999). Year effects are controlled for using

year dummies.

6.1 Independent variables

All specifications include a measure of R&D intensity (in logs), firm age, and the firm’s capital-
labor ratio (in logs). R&D intensity is calculated by dividing contemporaneous R&D to net capital.
The use of contemporaneous R&D (rather than stocks) follows extensive evidence on the R&D-

patents relationship that current patents mostly result from current R&D. The capital-labor ratio

"Using alternative measures of firm size, such as employment and net capital gives results that are qualitatively
identical to current ones.

12A few important policy changes regarding patent law occur during the sample period. For a review, see Jaffe
(2000).
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is simply net capital assets divided by the number of employees. Capital-intensity may affect both
the incentives to innovate and the incentives to patent, hence it may be an important confounder
(Kim, Lee and Marschke, 2009b). When the dependent variable is average quality, I also include
the firm’s patent-R&D ratio as a regressor, which controls for the firm’s patent yield per dollar of
current R&D investments. In all specifications, I include the logarithm of industry size (total value
of shipments) in the firm’s 3-digit SIC industry classification, as well as the annual compounded
growth in industry size. The former is intended to control for size effects and demand conditions at
the industry level. The latter captures effects of industrial economic conditions, such as industrial
expansion and decline.

Remaining controls are introduced below.

6.1.1 Technological diversity

Technological diversity of the firm is measured as one minus the concentration of the firm’s patenting

activity across different technological classes, based on the Herfindahl index. That is,

K [ PE\?
TDiyy=1- Zk_l (;)
- (2

where k € {1,..., K} are USPTO technology classes, PZ; is the number of it patents in technology
class k, and Pj; is the total number of it patents. The idea is that a more diverse research activity
that spans a large number of technological fields will be observed in the firm’s patents being spread
out among a larger number of technological classifications. Similar measures of diversity have
been previously employed by researchers. Gambardella and Torrisi (1998) and Leten et al (2007),
among others, use a similarly constructed Herfindahl-based index, while Garcia-Vega (2006) (and
few others) employ an entropy-based index of diversity. Granstrand and Oskarsson (1994) use both
to measure spread of a company’s engineering employment across fields of specialization. Both the
Herfindahl and entropy indexes are indexes of concentration, hence serve similar purposes.

Since the diversity measure uses knowledge of a firm’s patents, low patent counts are naturally
associated with low diversity. This can be considered as a "natural" case of non-diversification
rather than a bias in the measurement of diversity, and it is normal to attribute zero diversity
to a firm with one or zero patents in a given year. However, it is not desirable for all results
to be driven by a large number of low-patent, hence, low-diversity observations, especially while

investigating average patent quality. For this purpose, I include separate dummies for having one
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and two patents in a given year in each regression.

6.1.2 Spillovers

Explanations for the differences in small and large firm productivity include differences in ways
small and large firms benefit from spillovers. Thus, it is also useful to directly control for such
spillover effects. To this end, I include a weighted sum of external R&D expenditures in some

specifications, which is calculated as
SPit = log Ziyéj winSjt

where RSj; denotes the R&D stock of firm j during year ¢, and w;; is a measure of the technological
proximity between firms ¢ and j. I follow Jaffe (1986), and calculate w;; as

TjT;

Wi = ————
YT

where T; is a k x 1 vector that contains the number of patents of firm ¢ in USPTO technology class
ke {l,...,x} in its k'" element. T; can be called the "technological position vector" of firm i, and
wj; is the uncentered correlation between vectors 7; and 7. Thus, w;; is a metric in the technology
space and captures the coincidence of patenting activities of firms ¢ and j across USPTO technology

classifications!®.

6.1.3 Appropriability

As an imperfect indicator of appropriability conditions, I use the fraction of self-citations received
by the firm’s patents (Trajtenberg et al, 2002). This ratio gauges the extent the original innovator,
and not others, capture future benefits from innovation. I calculate the ratio at the firm level, i.e.,
by dividing total self-citations to total citations received for each firm-year. This is not a direct
measure of the fraction of total economic rents appropriated by the original innovator. However, it

does quantify the difficulty of imitation and backward engineering.

3Sece Jaffe (1986) for additional properties of this proximity metric.
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6.1.4 Technological opportunity

To capture and control for changes in technological opportunity, I include the annual growth of
patenting in the firm’s technological neighborhood. This variable is calculated as the annual com-
pounded growth of the sum ), 2 Wi Pje for firm i, where Pj; is the number of patents of firm
Jj # 1, and {w;;} are the proximity measures that were introduced above. Effects of technological
opportunity aren’t straightforward to study in isolation. Previous work attempted to control for
them using group effects, such as dummies for industries or technology classes, or dummies for
group-time pairs (Jaffe, 1986, and others). The growth of innovation activity in a firm’s technolog-
ical neighborhood has a straightforward interpretation in terms of technological opportunity, as it
captures the increased (collective) incentives to innovate and the abundance of innovations during
periods of high opportunity (Breschi, Malerba and Orsenigo, 2000). Note that we are interested
more in netting out the effects of technological opportunity from remaining coefficients rather than

estimating its precise effect.

6.1.5 Visibility

It is possible that a large firm receives more citations simply because its patent portfolio is more
visible to potential citing firms'4. This could bias results toward a more favorable outcome for large
firms, as increased visibility would be mistakenly interpreted as higher patent quality. To fend off
this possibility, I control for a measure of a firm’s visibility to others. For the firm ¢ and year ¢
observation, my visibility measure is the number of firms (excluding firm 7) that have cited firm i’s

patents until year ¢ (excluding year ¢)'°.

7 Data sources and description

Information on patents and citations come from the latest edition of the NBER patent and citations
data file (Hall, Jaffe and Trajtenberg, 2001). This edition contains all USPTO patent applications
and all citations made to these patents until 2006. All data on annual R&D expenditures, sales,
and other firm level variables are taken from the historical Compustat panel compiled by the same

authors. I use the latest edition of the match between USPTO assignee names and Compustat

Y1 thank Pelin Demirel for reminding me of this possibility.

5Note that if we were interested in the "impact" of innovations alone, it wouldn’t be desirable to net out visibility
effects from coefficients, since increased visibility would be a natural part of a firm’s external impact. This argument
does not necessarily hold when one is interested in quality.
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(Bessen, 2009). I follow the convention in the literature and calculate R&D stocks as a perpetual
inventory with 15% annual depreciation. Since Compustat does not provide the birth year of firms,
firm age is calculated from the first year a firm appears on Compustat tapes. While this is a noisy
measure of age, it is very close to the actual foundation year for most firms, and errors will be
sizeable only for very old ones. Firm age is used as a natural logarithm which should render such
errors minimal'S.

Recall that raw citations are corrected for truncation using the estimated correction weights in
Hall et al (2001). This procedure makes it necessary to leave a sufficient time gap between the last
year studied in the sample (here: 1995) and the final year we have access to citation data (2006),
since predicting total citations using only a few years of observed citations can be very misleading!”.
This time window is 11 years in the current study. On average, a patent receives 48.6% (Drugs
and medical) to 68.3% (Computers and communications) of its lifetime citations during the first
11 years after application depending on its technological category.

An interesting observation about quality indicators is that they are not persistent over time,
reflecting that eventual success of patented innovations are inherently unpredictable and contain a
fair amount of noise. In simple OLS regressions of (log) average quality on its first lag produces lag
coefficients ranging from 0.30 (for LSP) to 0.35 (for IP), and explains between 9.5% to 12.6% of
the variation in current quality. In contrast, the lag coefficient is 0.82 for patents per R&D (PR),
0.91 for patents and 0.99 for R&D expenditures (respective R? values are 0.67, 0.82 and 0.98). For
quality-adjusted patents per R&D, coefficients range from 0.60 to 0.71 (R? is between 0.38 and
0.51). As expected, innovation quality is less persistent and hence, less predictable than innovation
quantity and innovation inputs. It is also noteworthy that the persistence of the series falls as one
moves from input to output indicators, and from crude output indicators to finer ones.

Data on industry level variables are taken from the NBER-CES Manufacturing Industry Data-
base (Bartelsman and Gray, 1996). The dataset contains annual data on output, employment,
various indicators of costs, investments, capital stocks, and other variables for each 4-digit SIC
classification in U.S. manufacturing between 1958 and 2005. I use the annual value of shipments
for each industry as a measure of industry size. Annual industry growth for each SIC classification

is computed as the (log-compounded) growth rate of the industry’s value of shipments. Note that I

16T thank Bronwyn Hall for pointing this out.

7 Also note that for many patents of great significance (and with high lifetime citations as a result), one may expect
fewer citations after the initial few years after grant, as these innovations could take longer time to be understood,
adopted, and then cited.
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use the 3-digit SIC as the industry classification, and aggregate the value of shipments in relevant
4-digit SIC classes to the 3-digit classification to get industry size.

All variables in current dollar values are deflated using the GNP deflator. After deleting large
outliers (|log x;; — log zj—1| > 2), firms with only a single year in the data and removing observa-
tions with missing variables, the remaining sample consists of nearly 11000 observations covering
the 20 years between 1976 and 1995 (sample sizes differ slightly across specifications). One year
of observations are lost due to the AR(1) correction, and sample sizes for different specifications
differ slightly depending on the quality indicator used. All aggregations regarding "external" firms
have been undertaken using the largest possible sample at hand. Throughout the paper , the math-
ematical operation "log" is used to denote natural logarithms. Sample statistics for all variables
are provided in Table 1. Table 2 reports correlations between independent variables and Table 3

provides correlations between innovation indicators.

8 Results

8.1 Quality-adjusted patents

Table 4 reports results on the determinants of quality-adjusted patents per R&D. I also study
patents per R&D (unadjusted for quality) for comparison. The dependent variable in columns one
through four are the logarithms of PR (patents per R&D), CR (citations per R&D), IR (importance
per R&D) and LSR (LS index per R&D), respectively. In all specifications, the coefficient of sales is
negative and significant, indicating that both quality-adjusted patents (QR) and patents per R&D
(PR) fall with firm size. Thus, using quality adjustments on patents does not lead to a different
conclusion than what was previously known on relationship between size and patents per R&D.
Interestingly, the coefficient of the size term does not significantly differ across specifications. The
coefficient is not greatly affected when patents are interchanged with quality-adjusted patents, as
well as when we use (arguably more accurate) patent quality indicators, citations, importance, and
the LS quality index. Possible implications of this finding will be discussed below.

The coefficients of the polynomial expansion for technological diversity indicate a highly non-
linear diversity-QR relationship, with significant coefficients up to the cubic term. Higher order
polynomial terms tend to be insignificant for all specifications, and do not alter the shape of the
polynomial significantly. The cubic term has a positive coefficient, while the coefficients of the

remaining terms are negative. The coefficients of the polynomial terms are consistent with an

20



nearly U-shaped relationship between technological diversity and QR: The S-shape consists of a
slight increase in the dependent variable as diversity increases from zero to about 0.1, then a fall until
around 0.5, and then an increase between diversity values in 0.5 and 1. This contradicts previous
studies that also investigated possible nonlinearity between diversity and innovation (Henderson
and Cockburn, 1996; Huang and Chen, 2010). It is important to note that this difference isn’t
simply due to the inclusion of the cubic term. Excluding this term (while keeping the rest of the
specification intact) also yields a U-shaped relationship that increases in the larger part of the
support of diversity variable (coefficients are 0.258 for the second, and -0.054 for the first order
terms). Hence, we find that higher technological diversity is associated with higher QR for most of
the variable’s support, with a slight S-shape for the lower end of the diversity scale.

All independent variables except visibility, technological opportunity, industry size and indus-
try growth have significant coefficients in all regressions. Most notably, I find that the coefficient
of R&D intensity is negative and significant; firms with higher dedication to R&D obtain fewer
patents and attain lower total quality per R&D dollar. Firm age and capital intensity are nega-
tively associated with patents and quality-adjusted patents per R&D, while the spillover pool and
technological opportunity have positive impacts on these variables. Industry size has a positive co-
efficient in column 1 (PR), but the coefficient is insignificant in the remaining columns, where the
dependent variable uses quality-adjusted patents. In all columns, the coefficients on the quadratic
specification for appropriability indicate a statistically significant inverted-U shaped relationship
with all dependent variables. The visibility of the firm has a significant coefficient only in column
4 (LSP) and only at the 10% significance. The negative coefficient of this variable is unexpected,

and it is most likely due to the high within-firm persistence of this variable.

8.2 Quality vs. quantity

The most striking aspect of the regressions in Table 4 is that the determinants of patents per
R&D, and those of quality-adjusted patents per R&D are very similar. As long as one is counting
patents, it appears that almost nothing new is learned by counting them after a quality adjustment.
Coefficients are also insensitive to the use of different quality indicators: CR, IR and LSR all give
coefficients for key variables that are very similar to their counterparts for PR, both in sign and in
magnitude. Recall that QR € {CR, IR, LSR} is simply the product of QP € {CP, IP, LSP} and
PR. Our results may indicate that most of the variation in quality-weighted patents is due to the

variation in patent counts themselves, and has little to do with patent quality. The high correlation
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coefficients between these two sets of indicators (Table 3) also support this claim. Correlations
between patents per R&D and its quality-weighed counterparts range from 0.79 to 0.91. The
correlations between average quality indicators and PR, on the other hand, are small and negative,
ranging from -0.03 to -0.07.

By and large, it seems that citation-weighted patent counts reflect the behavior of the patent-
R&D ratio to a much greater extent than they reflect patent quality. Hence, these measures fall
short of representing true quality effects, and seem to directly inherit problems with simple patent
counts. As a result, Table 4 may be highlighting the determinants of innovation quantity by
looking at quality-adjusted patents, and not telling us much about patent quality. It is therefore
more meaningful to interpret results in Table 4 as evidence regarding the rate of a firm’s patenting
activity, rather than overall innovation quality. Note that a similar point, in a different context,
was also raised by Lanjuow and Schankerman (2004). While their primary focus was on using their
quality index to explain trends in research productivity, they also report that R&D expenditures
failed to explain the variation in innovation quality among innovating firms in the U.S. These
authors test whether including innovation quality improves the explanatory power of standard
regressions of firm performance, but do not provide a detailed account of the determinants of
innovation quality at the firm level. Atallah and Rodriguez (1996) raises the same concern with

such counting procedures as well. I study average patent quality in detail in the next subsection.

8.3 Average patent quality

I now turn to the determinants of average patent quality at the firm level. Table 5 reports regres-
sion results in which indicators of a firm’s average patent quality are dependent variables. The
specifications are similar to those in Table 4, except that the patent-R&D ratio is included as an
additional regressor. The polynomial in diversity is reduced to a quadratic form, as higher order
terms are insignificant in these regressions.

In columns 1 through 3, I study the determinants of CP (citations per patent), IP (importance
per patent) and LSP (LS index per patent), in the given order. Taking these regression at face
value, the most notable result is that the coefficient of firm size is insignificant in all columns at
all reasonable levels of significance, indicating that firm size has no bearing on the average quality
of a firm’s patents. The effect of technological diversity on average innovation quality is consistent
with an inverted-U pattern. However, both polynomial terms are statistically significant only in

column 3 (LSP). Neither polynomial coefficient appears to be significant in column 1 (CP), while
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only the first order term is statistically significant in column 2 (IP). Hence, there is evidence for
an inverted-U type relationship between technological diversity and innovation quality, but the
evidence is somewhat weak unless LSP is considered to be the preferred quality indicator. Both
the insignificance of firm size and the inverted-U pattern with respect to technological diversity are
robust to alternative specifications and estimation techniques that will be explored below!®.
Notably, R&D intensity has a positive and significant coefficient in all columns. Along with
the evidence from Table 4, this can be interpreted as evidence for a quality-quantity trade-off in
innovation. As R&D efforts (per capital asset) increase, firms obtain fewer patents (and fewer
quality-adjusted patents) per R&D dollar, but the average quality of these patents increases. R&D
intensity is conducive to higher quality innovation, while the rate of innovation falls with it. The
relationship between appropriability and patent quality is an inverted-U (except in column 1 where
only the squared term is significant), similar to the results in Table 4. Visibility, again, has the

unexpected negative sign.

8.4 Is patent quality unpredictable?

A number of important observations are in order. First, it is easy to observe that innovation
quality is less predictable than innovation quantity, which renders it more difficult to explain its
determinants. Many variables with statistically significant effects on quality-adjusted patents per
R&D (Table 4) fail to account for quality differences, as indicated by the fewer explanatory variables
with significant coefficients in Table 5. The explanatory power of these regressions are much lower
compared to their counterparts in Table 4 as well. Our regressions can explain only 3.1% of the
variation in log(CP), 2.6% of the variation in log(IP) and 3.8% of the variation in log(LSP). It
appears that patent quality has a large stochastic component, presumably because much of the
variation in average patent quality is due to chance!®.

The low explanatory power of these regressions could indicate that innovation quality is ran-
domly distributed across firms to a large extent, and little can be learned about its determinants.

A number of additional possibilities remain, though. First, recall that quality indicators for each

patent are normalized with respect to the 75th percentile of the quality distribution in the same

181t is worth noting that the insignificance of firm size is not due to the presence of the diversity measure. The coef-
ficient of firm size remains highly insignificant in regressions where average quality is not conditioned on technological
diversity.

197t is also unlikely that unobserved permanent effects are responsible for quality differences, since these are
differenced away in the fixed effects specification.
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technology class and with the same application year as the patent in question. This procedure natu-
rally reduces the variation in quality indicators. One possibility to consider is that our normalization
procedure may be removing too much information. I examine this possibility by studying the de-
terminants of non-normalized quality indicators while controlling for backward citations. While
being a poor substitute to normalization, this can also be considered as an input-output exercise.
If quality indicators (which are all based on forward citations to varying degrees) are measures
of the innovator’s intellectual output, backward citations would qualify as intellectual inputs for

O, This strategy greatly improves regression fit (R? is 0.19 for log(LSP)) and gives

innovation?
similar regression coefficients for key variables. Firm size remains insignificant, the technological
diversity polynomial has similar coefficients, and the positive effect of R&D intensity on average
quality is retained, again with a similar coefficient to its counterpart in Table 5. Previous findings
on appropriability carry through these regressions as well.

Second, the variation in quality may be absent only in the within dimension of the data. To
explore this possibility, I estimate the main regression equation using a between firm specification.
A larger variation exists between firms in normalized quality indicators (R? is at the order of 0.13).
The coefficient of firm size remains insignificant, and the polynomial in technological diversity is
again consistent with an inverted-U pattern. R&D intensity has a positive and significant coefficient,
which is comparable in magnitude to its counterpart in within regressions. Firm age has a negative
effect on average quality, and we retain similar results to Table 5 for appropriability. The coefficient
of visibility is positive, confirming the argument that the within-firm persistence of this variable is
responsible for the unexpected coefficients previously obtained.

Third, taking averages of our quality indicators for each firm may be destroying valuable infor-
mation about the entire spectrum of quality within firms. To highlight this, Figures 1 and 2 show
scatterplots of patent quality (the logarithm of normalized LS index) against firm size at two dif-
ferent levels of aggregation. Figure 1 is generated using firm level data, with each dot representing
a firm-year observation. Here, the vertical axis represents the logarithm of average patent quality
at the firm level. Figure 2 plots patent quality (again, the logarithm of the normalized LS index)
against firm size at the patent level, each dot representing a single patent. Comparing these figures,
it is easy to see the consequence of taking averages. Figure 1 indicates that innovation quality in
small firms is more dispersed around the mean, and dispersion of average quality falls as firms grow

larger. In fact, average patent quality converges roughly to unity for the largest firms in our sample,

20T thank Adam Jaffe for pointing this out.
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which indicates convergence close to the 75th percentile in the respective group?!. Figure 2, on the
other hand, reveals a different picture. As firms grow larger, the variety of patented innovations
grows toward both ends of the quality spectrum. The scatterplot indicates that the ability to obtain
higher quality patents increases with firm size on nearly the entire firm size spectrum. The figure
also indicates that large firms also obtain a larger number of "worthless" patents compared to small
firms, which dilute the firm’s quality average. The tendency for patent variety to increase with size
is reversed for the very largest firms in the sample, whose patents exhibit lower dispersion around
mean quality??.

From these observations, one may be inclined to draw the conclusion that large firms are more
successful in innovation due to a higher propensity to produce "top quality" patents. However,
such an interpretation would be unwarranted. A careful examination of Figures 1 and 2 suggests
that they are not at odds with the hypothesis that patent quality is distributed randomly across
firms of different sizes, and they do not contradict our previous conclusions on the determinants
of average quality. Consider the extreme scenario that innovation quality is entirely random, and
that each patent draws its quality from a common probability distribution. Then, a large firm will
get more draws at the upper tail of this distribution owing to its larger number of patents (not
necessarily larger per R&D, per employment or per sales). As a result, the average quality of its
best patents will be higher as well. An interesting figure is given in Figure 3, which plots the quality
index for each patent against the logarithm of the patent portfolio size of the firm that patented
the innovation. The association between the two variables appears to be almost entirely random.
All quality levels are associated with almost all patent counts at the patent level, except for firms
with the largest patent portfolios (who obtain a slightly more selective set of patents). The figure
supports the idea that the shape of the scatterplot in Figure 2 is due to the increased patent counts
of large firms, and not due to size differences.

This claim can easily be put to test using arguments that do not appeal to mean quality of the
firm’s entire patent portfolio. From Figure 2, it is clear that a regression of the average quality of

a firm’s "top" patents (say, the average quality of its 5, 10 or 20 patents with highest quality) on

21 One may consider the possibility that this is a statistical fluke due to the potential "dominance" of some technology
classes by a small number of very large firms. This isn’t the case, as indicated by the scatterplots of quality normalized
with respect to different percentiles, which do not converge to unity for the largest firms. Also recall that percentiles
of quality distributions are calculated for all patents in the USPTO sample in a given year, not just those that are
matched to corporations.

22To provide a more precise statistic, a regression of the coefficient of variation of patent quality, calculated for each
firm, on a polynomial in sales reveals that the variation increases and then falls with size, with the highest variation
around 166 million in sales.
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firm size will produce a positive coefficient. However, if the distribution of quality across small and
large firms is random, this effect should be completely explained by the variation in the number of
patents, if we control for the latter. The data clearly supports this claim. Without conditioning on
the number of patents, regressions of the average quality of the top 5, 10 and 20 patents of each
firm (using the same specification and methods in Table 5) produce the expected positive coefficient
for firm size. Controlling for the number of patents, however, the effect of firm size is completely
picked up by the coefficient of patents, and firm size is driven into insignificance. Hence, higher
patent quality at the higher end of the quality distribution in large firms is simply due to their
larger patent portfolios, and not due to size effects per se?3.

Fourth, it is possible that important aspects of innovation quality may be lost in annual data,
and it may be preferable to aggregate a firm’s innovative output over longer time periods. Note that
this is a noise reduction exercise; if annual stochastic shocks that are part of patent quality have low
covariance across periods, their average over T years will have lower variance than each individual

24 For this purpose, I construct a three-period panel

shock if they also have common variance
consisting of the five-year periods between 1976-1980, 1981-1985 and 1986-1990. Flow variables
(patents and quality-weighted patents, R&D, sales, industry size) are summed, and stock variables
(capital, employment, spillover pools) are averaged for each five year period. Firm age and visibility
are taken as the age and visibility at the beginning of the period, while technological diversity is
re-calculated using all patents of the firm in the five year interval?®. These regressions increase
explanatory power of the baseline specification, with regressions explaining 6.6% to 8.2% of the
within variation in normalized patent quality (compared to 2.6% to 3.8% in Table 5), which still
remain quite low. It could be that annual shocks to patent quality have non-negligible positive
covariance over time, in which case the variance of averaged shocks need not be much smaller that
the average variance of the shocks. Recall that I control for serial correlation in errors, which

allows consistent estimation of parameters under correlated shocks, but this need not increase the

explanatory power of regressions. These regressions produce qualitatively identical results to those

23This is also a useful exercise in order to see which factors lead firms to increase the quality of their "best"
patents, holding firm size and the number of patents constant. R&D intensity has a large, positive coefficient in these
regressions. They give mixed results on the effect of technological diversity, depending on whether the sample is
restricted to firms with at least n patents for regressions that use the average quality of the firm’s top n patents.
Previous results regarding appropriability conditions carry though these analyses as well.

4 Similarly, under different variances of shocks, the average shock will have lower variance than the average variance
of annual shocks.

25T also undertook regressions in which all regression variables are directly averaged across the relevant five year
window. These regressions do not produce different results.
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in Table 5.

These analyses reveal that quality is to a large extent randomly distributed across firms, but
the distribution is not completely stochastic: technological diversity and R&D intensity affect
innovation quality, holding firm size and remaining controls constant. However, there seems to be
less in the hands of firms to affect the quality of their innovative output. Quality is distributed
randomly across innovating firms of different sizes, a result that appears to be robust across many
specifications. The Lanjuow and Schankerman (2004) suggestion that innovation quality is most
useful after taking averages seems to have mixed appeal: too much information is lost by taking
averages at the firm level, but taking averages over time somewhat reduces the noise in the quality
measure. Even then, a substantial stochastic component remains. Appropriability conditions also

affect innovation quality, which will be highlighted further in the next subsection.

8.5 On appropriability

The paper’s results on appropriability conditions merit some emphasis. First, appropriability has
statistically significant effects on both the rate (Table 4) and quality (Table 5) of innovation. Also,
and uniquely among our explanatory variables, its effects on the rate and quality of innovation are
remarkably similar. This is among the most robust results of the current paper: it is observed in all
main and exploratory regressions detailed above. The estimated relationship is consistent with an
inverted-U type relationship between appropriability and both the rate and quality of innovation.
According to the point estimates, the "peak" innovation rate occurs at the self-citation rate of
0.39, and peak innovation quality is observed at the self-citation rate of 0.40. When all alternative
estimation strategies discussed in the above subsection are considered, this "optimum" self-citation
rate varies between 0.32 and 0.40. Therefore, peak rate and quality for innovation occur at very
similar self-citation rates. Hence, these results may indicate a genuine and strong productivity
effect.

The finding that increased appropriability is initially conducive to both higher innovation rate
and higher innovation quality is intuitive, as better appropriability conditions will provide better
incentives to innovate and to patent high quality innovations. However, too much appropriability is
detrimental to innovation. The obvious interpretation of this finding is that while an initial increase
in patent protection (which will inadvertently vary across sectors and technologies even if the overall
legal environment were identical) is conducive to innovation, too strong a patent protection can

be detrimental. This finding echoes a concern that has been stated by many previous researchers,
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both in empirical and theoretical work (Lerner, 2002; Gallini, 1992, 2002).

However, it is also possible that the appropriability indicator (which is the rate of self-citations
at the firm level) is acting as a proxy for a more fundamental attribute of the firm’s technological
environment. Keep in mind that different meanings can be attributed to, or will be correlated with,
the rate of self-citations at the firm level. One such property is the cumulativeness of innovation;
the extent innovations build on existing capabilities rather than being independently conceived.
On the other hand, subscribing to a somewhat unusual interpretation of patent citations, it is easy
to imagine that the rate of self-cites partly represents a firm’s relative position with respect to its
technological rivals. Increased self-citation rate (which also means lower rate of citations from other
firms) could indicate that the firm in question is among the few that can capitalize on existing
opportunities in the relevant technology field, and there aren’t many other firms (competing or
collaborating) that can dip into the same opportunity well. This interpretation would lend itself to
an argument on the relationship between competition and innovation, between which many authors
have found an inverted-U type relationship (Aghion et al, 2005; among others). In short, the effect
of the self-citation rate on the rate and quality of innovation opens up interesting possibilities and

questions for detailed future investigation.

9 Conclusion

Results of the paper are at odds with the Schumpeterian claim that large firms are the primary
engine of innovation. I find evidence that innovation quality is randomly distributed among firms
of different sizes. Neither small, nor large firms have inherent advantages in producing higher
innovation quality. The paper emphasizes that patent quality has a large stochastic component,
rendering its analyses difficult, as few variables are successful in explaining quality differences
within and between firms. Indeed, investigating the determinants of innovation quality is a bit
like looking for a needle in a haystack. However, I also find that the distribution of quality across
innovating firms is not entirely random: It is affected by R&D intensity, technological diversity
and appropriability conditions. It is observed that large firms have higher propensities to obtain
"top quality" patents compared to small ones, but this is merely a result of the size of their patent
cohorts, which supports the random distribution hypothesis.

The paper also highlighted problems with treating quality-adjusted patent counts as indicators

of pure quality, as there is ample evidence that they are primarily driven by patent counts. It
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is best to treat quality-adjusted patent counts as alternative indicators of the rate of innovation,
and not innovation quality. As found elsewhere, patents per R&D fall with firm size, and so do
quality-adjusted patents per R&D. The relationship between quality-adjusted patents per R&D
and technological diversity is highly non-linear, with polynomial expansion terms significant up to
the cubic term. The shape of the polynomial is such that it increases for most of the support of
the diversity variable, mostly indicating a U-shaped relationship, with a small S-shape at the lower
end of the diversity scale.

Alternative explanations for the stochastic nature of innovation quality need to be highlighted.
One intriguing possibility is that innovation quality is inherently unpredictable to a great extent,
and differences across firms are mostly due to stochastic events that are outside the firm’s control.
Another possibility is that determinants of innovation success lie elsewhere: the firm’s organizational
choices, technological capabilities that are not visible in aggregate patent or accounting data, or
communication channels through its management hierarchy. Examining such properties require a
level of detail that immediately faces severe data constraints, but much can be accomplished by
focusing on a carefully selected sample of industries or technologies, which will allow data collection
for a small sample of innovating firms. However, we can comfortably rule out explanations that
are due to unobserved permanent characteristics, and characteristics that are directly related to
the size of the innovating firm. Finally, it is possible, however unlikely, that results of the paper are
driven simply by patenting choices of innovating firms. If firms’ patenting decisions with respect to
the expected quality of innovation (and other characteristics) are uniform across innovating firms,
this would lead to similar relationships between firm characteristics and innovation quality that
we have observed. This is an unlikely explanation as highlighted by numerous studies that point
to differences in the patenting practices and motives of small and large firms (Arundel and Kabla,
1998; Arundel, 2001; Leiponen and Bima, 2009; among others).

On the other hand, it is perhaps more likely that quality differences, and the quality distribution
within firms are driven by more fundamental characteristics of the technological environment firms
operate in. Future work needs to examine how the links between R&D investments, innovation
rate and innovation quality is determined and conditioned by fundamental characteristics of the
technologies involved, such as their current stages during the technology (and not just industry) life
cycle, and the cumulativeness, radicality and sequentiality of innovation in the related technology
field. There is some previous work on industry characteristics that are most conducive to inno-

vation and how these characteristics condition the size-R&D-innovation relationship, but research
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on these issues is hampered by the lack of empirical measures for important theoretical constructs
(Trajtenberg et al, 1997). Future research should also focus on uncovering and measuring the exact
technological properties that determine, and condition the relative contribution of small and large
firms.

It is surprising that innovation quality has been studied so scarcely compared to other aspects of
innovation. Results of the current paper have several implications for innovation quality at the firm
level, and suggests future work in several additional directions. An important recommendation of
the current paper is that further studies of innovation quality need to pay focused attention to the
entire distribution of innovation quality within firms, not just its average. Furthermore, by studying
all USPTO patents that are assigned to manufacturing companies, this paper focused on large-scale
and generalizable properties of innovation quality. While ample effort has been expanded to ensure
comparability of quality indicators across different technologies, this general view certainly hides the
finer details of the innovation process in each industry and the technologies behind its products.
The trade-offs between generalizability and specificity should be evident. Examining innovation
quality at smaller levels of aggregation, such as within specific and narrow technology fields, is a
promising avenue and would supplement current analyses.

The article’s results regarding appropriability conditions open up interesting questions as well.
While it is possible to interpret these findings as pure productivity effects of the strength of IP
protection, alternative explanations are possible, and future research needs to disentangle the sep-
arate roles of characteristics that may be correlated with the appropriability measure used in the

current paper, the rate of self-citations.
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Figure 1: Scatterplot of average patent quality (logarithm of the Lanjuow and Schankermann
index, normalized) against firm sales, plotted at the firm level. Each dot represents a firm-year
observation.
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Figure 2: Scatterplot of patent quality (logarithm of the Lanjuow and Schankermann index, nor-
malized) against firm sales, plotted at the patent level. Each dot represents a single patent.
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Figure 3: Scatterplot of patent quality (logarithm of the Lanjuow and Schankermann index, nor-
malized) against the (logarithm of) annual patent count of the firm that owns the patent. Each
dot represents a single patent.
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Table 1
Sample Statistics
Sample with non-zero patents, citations and R&D

Patents

Citations

Citations, Normalized

Importance

Importance, Normalized

Lanjuow & Schankerman (2004) index

Lanjuow & Schankerman (2004) index, Normalized
R&D Expenditures

Patents and Quality-Adjusted patents per R&D

PR (Patents per R&D)

CR (Citations per R&D)

CR (Citations per R&D), Normalized
IR (Importance per R&D)

IR (Importance per R&D), Normalized
LSR (LS Quality per R&D)

LSR (LS Quality per R&D), Normalized

Average Quality

CP (Citations per Patent)

CP (Citations per Patent), Normalized
IP (Importance per Patent)

IP (Importance per Patent), Normalized
LSP (LS Quality per Patent)

LSP (LS Quality per Patent), Normalized

Independent Variables

Sales

Technological Diversity

Age

R&D Intensity

Capital/Labor ratio

Appropriability

Visibility

External Variables

(3-digit SIC and Technological Proximity)

Spillover Pool (in logs)

Technological Opportunity

Industry Sales (Value of Shipments)

Industry Growth (Growth of Value of Shipments)

Mean
25,16
376,34
21,79
2801,70
28,16
120,23
22,33
82,71

1,43
1,67
1,31
177,81
1,60
6,01
1,26

17,07
0,97
128,45
1,22
4,80
0,94

2249,04
0,49
16,89
0,18
84,17
0,07
38,74

9,71
0,02
39788,48
0,08

Median
4,00
59,23
3,70
333,03
4,11
16,81
3,69
10,11

0,52
0,19
0,41
33,69
0,44
1,86
0,42

11,91
0,80
63,98
0,85
3,63
0,83

298,91
0,56
17,00
0,06
61,59
0,04
8,00

9,84
0,01
26042,00
0,08

Standard
Deviation

80,53
1485,57
71,26
11587,20
96,60
516,25
71,51
360,89

5,95
9,97
6,17
1149,88
8,14
29,12
5,22

18,60
0,81
247,38
1,55
4,61
0,62

8138,40
0,36
9,89
0,63

86,48
0,10
83,19

0,83
0,08
44270,69
0,09

Minimum
1,00
1,04
0,03
1,05
0,00
0,05
0,02
0,00

0,00
0,00
0,00
0,02
0,00
0,00
0,00

0,45
0,03
0,45
0,00
0,05
0,02

0,00
0,00
1,00
0,00
0,91
0,00
0,00

4,58
-0,39
557,20
-0,36

Maximum
2559,00
57356,70
2361,13
350817,13
3247,25
19246,61
2202,09
8026,67

307,06
548,06
258,36
68736,29
339,44
2133,53
232,86

243,11
13,24
8165,47
28,49
97,24
13,03

155067,43
0,99

38,00
25,32
1073,97
0,88
1193,00

11,43

4,50
327907,50
0,56

NOTES: All citations are non-self cites and are corrected for time truncation, except those used in the calculation of the

Lanjuow & Schankerman quality index (which uses total citations during fixed time windows following patent

application). Normalization is performed on each quality index before taking logarithms. All dollar values are in millions
of 1992 dollars, deflated using the GNP deflator. Employment is in thousands of employees. All logarithms are natural

logs. Sample size: 11860. Sample period: 1976-1995.




Table 2
Correlation Matrix

log Tech. log log log log Tech. Ind
Variable Name Abbrev. (S) Div. (A) (R/C) (P/R) (C/E)  App SP Opp. Vis Ind S Gr
log (Sales) log (S) 1
Technological Diversity Tech. Div. 0,58 1
log (Age) log (A) 0,61 0,38 1
log (R&D Intensity) log (R/C) -0,46 -0,09 -0,38 1
log (Patents/R&D) log (P/R) -0,38 0,04 -0,15 -0,26 1
log (Capital/Employment) log (C/E) 0,39 0,23 0,19 -0,33 -0,18 1
Appropriability App. 0,13 0,17 0,08 0,03 0,04 0,12 1
Spillovers SP 0,32 0,44 0,24 0,20 -0,30 0,21 0,06 1
Technological Opportunity Tech.Opp. -0,12 -0,02 -0,11 0,32 -0,08 0,01 -0,01 0,18 1
Visibility Vis 0,58 0,55 0,50 0,02 -0,21 0,28 0,17 0,55 0,15 1
log (Industry Size) Ind S 0,04 0,05 0,00 0,21 -0,17 0,16 0,01 0,36 0,27 0,28 1
Industry Growth IndGr -0,04 -0,01 -0,11 0,06 001 -0,12 -0,04 -0,07 -0,01 -0,17 -0,03 1
Dependent Variables
log (Citations/Patents) log (CP) -0,03 0,08 -008 019 -007 -001 -005 0,10 006 006 004 0,03
log (Importance/Patents) log (IP) 0,03 0,17 -0,04 0,19 -0,06 0,02 0,09 0,13 0,06 0,13 0,03 0,03
log (LS Quality /Patents) log (LSP) 0,00 0,10 -0,05 0,17 -003 001 0,17 009 008 0,10 0,06 0,00
log (Citations/R&D) log (CR) -0,36 0,07 -0,17 -0,14 0,87 -0,17 0,01 -0,22 -0,04 -0,16 -0,14 0,03
log (Importance/R&D) log(IR) -0,30 0,13 -0,14 -0,10 0,79 -0,14 0,09 -0,17 -0,03 -009 -0,12 0,03
log (LS Quality/R&D) log (LSR) -0,35 0,07 -0,15 -0,17 091 -0,17 011 -024 -005 -0,15 -0,14 0,01




Table 3

Correlations between innovation indicators

log log log log log log log
Dependent Variables (PR) (CR) (IR) (LSR) (CP) (IP) (LSP)
log (Patents/R&D) log (PR) 1
log (Citations/R&D) log (CR) 0,87 1
log (Importance/R&D) log (IR) 0,79 0,96 1
log (LS/R&D) log (LSR) 0,91 094 0,91 1
log (Citations/Patents) log (CP)  -0,07 0,42 0,50 0,24 1
log (Importance/Patents) log (IP)  -0,06 0,40 0,57 0,26 0,92 1
log (LS/Patents ) log (LSP) -0,03 0,33 0,43 0,39 0,73 0,74 1




Table 4

Patents and Quality-Adjusted Patents per R&D
Fixed Effects regressions with AR(1) correction

Patents Quality-Adjusted Patents
log (LSR):
log (CR): log (IR): Lanjuow &
log (PR): Citations per R&D Importance per R&D Schankermann (2004)
Patents per R&D Normalized at 75" Normalized at 75" Quality Index
percentile percentile Normalized at 75"
percentile
1 2 3 a
log (Sales) -0.428"  (-27.86) 04717 (-18.03) 0476 (-14.78) -0.467°  (-19.09)
Technological Diversity 0.186  (17.93) 0.190" (9.33) 0.221" (8.57) 02177 (11.72)
Squared -0.428"  (-16.14) -0.481" (-9.23) -0.532" (-8.08) -0.498"  (-10.45)
Cubed 0.294"  (20.23) 03317  (11.71) 0363  (10.15) 03317  (12.78)
log (Age) -0.194"" (-4.42) -0.273" (-4.22) -0.302" (-3.85) -0.263" (-4.24)
log (R&D Intensity) -0.826°  (-60.05) 08117 (-32.72) -0.798"  (-25.94) 08117  (-35.42)
log (Capital/Employment) -0.603"  (-25.34) 0617 (-14.69) 0594 (-11.44) -0.644"  (-16.44)
Appropriability 0.516 (5.81) 0.784" (3.77) 1.717" (7.58) 2296 (14.48)
Squared -0.727" (-5.06) -3.826" (-8.53) -3.451" (-8.67) 2,958 (-11.47)
Spillovers 0.217" (4.62) 0.283" (3.57) 0.301" (3.06) 0.345" (4.69)
Technological Opportunity 0.225" (2.88) 0.295" (1.86) 0.180 (0.89) 0.312" (2.17)
Visibility 0.0047 (0.28) -0.0336 (-1.17) -0.0585" (-1.65)  -0.0638" (-2.37)
log (Industry Size) 0.0832" (2.01) 0.0478 (0.68) 0.0411 (0.47) 0.0025 (0.04)
Industry Growth -0.0351 (-0.59) 0.0581 (0.51) 0.0608 (0.42) 0.115 (1.10)
Year Dummies (1977-1995) YES YES YES YES
Dummy for Patents in {1,2} YES YES YES YES
Intercept -0.0799"" (-2.27) 0.0564 (0.62) 0.115 (0.94) 0.0445 (0.57)
R-squared 0.650 0.382 0.311 0.425
Modified Durbin-Watson 1.077 1.444 1.510 1.394
LBI (Baltagi & Wu 1999) 1.454 1.902 1.970 1.864
p 0.537 0.364 0.332 0.396
N 10439 10317 10328 10414

Notes: t-statistics are reported in paranthesis. Non-self cites are excluded while constructing CR and IR. All logarithms are natural

logs.

Significance indicators: " p <0.05, ' p <0.10.




Table 5

Average Patent Quality
Fixed Effects regressions with AR(1) correction

Dependent Variable: Average Patent Quality

log (CP):

Citations per Patent,

Normalized at 75™

log (IP):
Importance per Patent
(Trajtenberg et al, 199x)

Normalized at 75"

log (LSP):

Lanjuow &

Schankermann (2004)

Quality Index

percentile percentile Normalized .at 75%"
percentile
1 2 3
log (Sales) 0.0121  (0.55) 0.0332  (1.13) 0.0212  (1.09)
Technological Diversity 0.0193 (1.26) 0.0490" (2.38) 0.0427" (3.21)
Squared -0.0110  (-0.84) -0.0149  (-0.85) -0.02707  (-2.37)
log (Age) -0.0646  (-1.31) -0.0842  (-1.27) -0.0542  (-1.22)
log (R&D Intensity) 0.0445" (1.87) 0.0886 (2.77) 0.0526 (2.51)
log (Patents/R&D) 0.0179 (1.14) 0.0549" (2.61) 0.0292" (2.12)
log (Capital/Employment) -0.0015 (-0.04) 0.0429 (0.92) -0.0200 (-0.65)
Appropriability 0.0762 (0.44) 1.136" (5.65) 17117 (13.58)
Squared 2564 (-6.89) 2647 (-7.49) 21427 (-10.44)
Spillovers 0.0124  (0.20) 0.00345  (0.04) 0.0638  (1.14)
Technological Opportunity -0.0800 (-0.60) -0.225 (-1.25) 0.0081 (0.07)
Visibility -0.0556 (-2.46) -0.08237  (-2.69) -0.0767"  (-3.81)
log (Industry Size) (3-digit SIC) -0.0034  (-0.06) -0.0016  (-0.02) -0.0414  (-0.84)
Industry Growth (3-digit SIC) 0.0804  (0.85) 0.0731  (0.58) 0121  (1.47)
Year Dummies (1977-1995) YES YES YES
Dummy for Patents in {1,2} YES YES YES
Intercept 0.0904  (1.02) 0.145  (1.22) 0.103  (1.42)
R-squared 0.0314 0.0256 0.0380
Modified Durbin-Watson 1.602 1.601 1.566
LBI (Baltagi & Wu 1999) 2.101 2.087 2.094
p 0.295 0.295 0.321
N 10317 10328 10414

Notes: t-statistics are reported in paranthesis. Non-self cites are excluded while constructing CP and IP. All logarithms

are natural logs.

Significance: = p<0.05, p<0.10.
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