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Abstract

I study the size and scope determinants of innovation rate and quality for a large panel of U.S.

manufacturing �rms. I employ known indicators of patent quality to show that quality-adjusted

patents per dollar of R&D fall with �rm size. This �nding is in line with previous research, and is

driven by the variation in patent counts rather than the variation in patent quality. In contrast,

�rm size has no e¤ect on the average quality of innovation at the �rm level. Technological

diversity increases the quality-adjusted patent count on most of the diversity scale, but its

relationship with average quality is an inverted-U. The paper�s results are consistent with the

presence of a quality-quantity trade-o¤ in innovation: As R&D intensity increases, the rate of

corporate innovation falls, but its average quality increases. Finally, I �nd that appropriability

conditions have a similar, non-linear e¤ect on both the rate and quality of innovation.

Keywords: Innovation quality; Firm size; Technological diversity; Patents; Citations; Apro-

priability.

JEL Classi�cation: O30, O31, O32, O33, L6, C23.
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1 Introduction

The relationship between �rm size and R&D productivity has been among the most intensely

debated questions in the economics of innovation. The discussion goes back to the writings of

Schumpeter (1942) and Galbraith (1952), who claimed that large �rms with market power were

the primary engines of technological change. Schumpeter challenged the established views behind

anti-trust policy and static notions of allocative e¢ ciency, claiming instead that the large �rm with

market power was the primary engine of technological progress1.

In this article I investigate the e¤ect of �rm size and technological diversity on innovation for

a large panel of U.S. manufacturing �rms. In contrast to many previous studies that looked at

the e¤ect of size on the rate (quantity) of innovation at the �rm level, I focus primarily on the

determinants of innovation quality. Previous authors found a negative relationship between �rm

size and innovation productivity, as proxied by quantity indicators such as patents and innovation

counts (Bound et al, 1984; Acs and Audretsch, 1991a; among others). A key empirical �nding is

that small �rms obtain more patents (or signi�cant innovations) per dollar of R&D expenditures

for most industries and on nearly the entire support of the �rm size distribution2.

However, the rate at which innovations accrue says little about the actual value of a �rm�s

innovative output. It is possible, for instance, for large �rms to produce "better" and more impor-

tant innovations, while also producing them less frequently. In other words, large scale may create

advantages that improve the quality of innovation, if not its quantity. This article explores this

possibility, by jointly examining quantity and quality indicators for a �rm�s patented innovations

in relation to �rm size. The reason for studying technological diversity along with �rm size is that

it is a key confounder in the size-innovation relationship, i.e., size advantages may be primarily due

to increased scope, and not increased scale (Cockburn and Henderson, 2001). The two issues are

intimately related in that while companies grow, the size and diversity of their activities increase

concurrently. Then, it is important to test whether scale and scope e¤ects have productivity ef-

fects above and beyond that of the other. The strategy is also more useful to capture interesting

1This assertion became known as the Schumpeterian hypothesis, even though claims regarding size e¤ects alone
do not appropriately capture Schumpeter�s claim on the conditions favorable to innovation in industrial R&D (Fisher
and Temin, 1973), while arguments related to the importance of �rm size are more evident in Galbraith�s (1952)
writings. For responses from contemporaries of these authors, and an introduction to the discussion they initiated,
see Mason (1951) and Mueller (1957).

2Some authors found a positive relationship between size and productivity at the very top of the size distribution,
often due to a small number of very innovative and very large �rms, indicating a U-shaped relationship between �rm
size and innovativeness (Scherer, 1965; Pavitt, Robson and Townsend, 1987; Audretsch and Acs, 1991).
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quantity-quality trade-o¤s that may be at work.

To study the determinants of innovation quality, I utilize a variety of indicators that can be used

as proxies for the quality of a �rm�s patented innovations. These are (i) citations made to a given

patent, (ii) the index of "importance" developed by Trajtenberg et al (1997), which adds discounted

second generation citations (citations received by patents citing the patent in question) to a patent�s

citation total, and (iii) the patent quality index developed by Lanjuow and Schankerman (2004),

which extracts the common factor of a number of quality-related attributes. I take ample care to

ensure comparability of citations across time and across technology �elds by normalizing citation

counts against meaningful benchmarks. Then, I study the determinants of quality-weighted patent

count obtained per dollar of R&D expenditures (i.e., total quality/R&D), which can be considered

as a proxy for total output achieved per R&D dollar invested, and the determinants of the average

quality of patented innovations at the �rm level.

It should be noted that this study looks at the e¤ect of size and technological diversity on

innovation for the sample of �rms that are already innovative (have at least one patent during the

year in question). It is established by a number of authors that the probability to innovate increases

with size. The same is true for the current sample of �rms as well. Also, the study focuses on a large

panel of manufacturing �rms that spans a large number of industries and technologies, hence seeks

results that are to a large extent generalizable. While heterogeneity across industries are expected

to exist, any structural relationship between variables of interest should be visible in aggregate

data, as long as one is careful while making comparisons across industries and technologies.

The rest of the paper is organized as follows. Section 2 presents a brief summary of the paper�s

main results. Section 3 outlines main theoretical arguments for scale and scope e¤ects on innovation

and Section 4 presents a detailed review of the literature. Section 5 presents indicators of the rate

and quality of innovation used in the paper and discusses their merits and basic properties. Section

6 presents empirical speci�cation and estimation strategy. Section 7 describes the data, Section 8

presents main results and Section 9 concludes the paper.

2 Summary of Results

It is useful to summarize the main �ndings of the paper before delving into details.

� Quality-weighted patent counts obtained per R&D dollar decrease with �rm size. This �nding

mirrors the previous literature on the �rm size-innovation relationship that used simple patent
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or innovation counts as output measures. I argue that this �nding is driven by the variation

in patent counts, rather than the variation in patent quality. This is due to a problem with

merely counting citations: the problems with patent counts are simply transferred to the level

of total citations, hence the latter falls short of being an adequate quality indicator at the

�rm level (Atallah and Rodriguez, 2006; Lanjuow and Schankerman, 2004).

� The relationship between quality-adjusted patents per R&D and technological diversity is

non-linear and it is best approximated by a cubic polynomial. The shape of the polynomial

indicates that total quality per R&D increases for most of the support of the diversity variable

as diversity increases.

� Firm size has no e¤ect on average patent quality at the �rm level. While large �rms have

higher propensity to obtain highest quality patents, this is due to the size of their patent

cohorts, and not due to size di¤erences per se. Innovation quality is randomly distributed

across �rms of di¤erent sizes.

� Innovation quality has a large stochastic component, but it is not entirely random. It is

primarily a¤ected by R&D intensity, technological diversity and appropriability conditions.

R&D intensity a¤ects innovation quality positively, and the relationship between technological

diversity and innovation quality is an inverted-U.

� Results are consistent with a quality-quantity trade-o¤ in innovation: Increased R&D inten-

sity results in fewer patented innovations per R&D dollar, but an increase in the average

quality of innovation.

� Appropriability conditions have similar e¤ects on both the rate and quality of innovation,

which are consistent with an inverted-U pattern.

3 Theoretical Arguments

3.1 Innovation and size

Both the small and the large �rm have their respective advantages in innovation. Large �rm

advantage in innovation stems mostly from the control of, and access to material resources, while

small �rms draw advantages from institutional and behavioral characteristics (Rothwell, 1989).

Most important large �rm advantage is due to the presence of �xed costs and scale economies.
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Galbraith (1952) writes "Because development is costly, it follows that it can be carried on only

by a �rm that has the resources which are associated with considerable size." Comanor (1967),

Mans�eld (1964) and Jewkes et al (1971) advance similar arguments. Cohen and Klepper (1996)

claim that large �rms enjoy advantages in R&D due to a cost spreading e¤ect, i.e., they command

a larger output over which they can apply the output of their R&D programs. Furthermore, large

�rms tend to have diversi�ed product lines and technological capabilities, which allow them to

better exploit unforeseen innovation opportunities and spread the risks of R&D into simultaneous

projects (Nelson, 1959; Henderson and Cockburn, 1996). Large �rms also obtain easier access to

outside �nancing since it is di¢ cult for a small �rm to signal favorable future prospects (Galbraith,

1952; Hall, 2002). Finally, large �rms are argued to enjoy advantages in the labor market, and hire

higher quality technical personnel (Idson and Oi, 1999; Kim, Lee and Marschke, 2009a).

On the other hand, large �rms�incentives and ability for innovation is hindered by an excess of

bureaucracy and unwieldy mechanisms of decision making. Scherer (1980) notes that bureaucracy

in large �rms is not conducive to taking the necessary risks required for R&D, where projects

need to penetrate layers of risk-averse and conservative resistance. There is abundant anecdotal

evidence suggesting that large �rms resist radical and disruptive change, and major innovations

are disproportionately produced by innovative small companies. Empirical evidence supports such

claims. Cooper (1964), interviewing 25 experienced development managers, �nds that a given

product would cost three to ten times as much to develop in a larger �rm than in a small one due

to excessive bureaucracy and red tape. Blair (1972) presents evidence that large �rms underestimate

the demand for new items, neglect inputs from inventors, tend to be satis�ed with the status quo

and prefer protecting investments in current technologies rather than innovate. A similar argument

is known in industrial organization as the replacement e¤ect : Innovation entails replacing one�s

own technologies and cannibalizing its own pro�ts, giving large �rms poorer incentives to innovate

(Arrow, 1962; Reinganum, 1983). There is some evidence that small �rms use external sources of

knowledge more e¤ectively (Link and Rees, 1991) and bene�t from spillovers from the university to

a greater degree than large �rms (Acs, Audretsch and Feldman, 1994). In short, both the incentive

and the ability to produce high-quality innovation often require the �exible entrepreneurship of the

small �rm. Also, it is often noted that small �rms overcome size disadvantages and sustain high

quality innovation by concentration in strategic niches, which allow them to produce specialized

but sophisticated innovation (Agarwal and Audretsch, 1999; Pavitt et al, 1987).
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3.2 Innovation and technological diversity

Technological diversity in innovating �rms is often dictated by the nature, diversity and techno-

logical requirements of their production activities. Production of a single commodity increasingly

necessitates competence in a variety of related technologies, and so does expanding into new prod-

uct markets. Firms also diversify in order to exploit scope economies in R&D. Increased diver-

si�cation may internalize potential externalities between di¤erent but related �elds and lead to

a cross-fertilization of ideas (Henderson and Cockburn, 1996). Previous research has shown that

�rms do not diversify in a random fashion, but diversify into technologically related areas (Breschi,

Lissoni and Malerba, 2003). This suggests that �rms�diversi�cation opportunities may be highly

constrained, but also that �rms use diversi�cation to capture complementarities between related re-

search �elds. On the other hand, diversi�cation may induce �rms to forgo the bene�ts of increased

focus and specialization, i.e. the long term bene�ts of building higher comparative advantages in

speci�c �elds. Diversi�cation dilutes the �rm�s �nancial and intellectual resources in each �eld

of activity, reducing potential bene�ts from scale economies within each technology. Hence, it is

natural to say that a �rm faces a trade-o¤ between increased scale of each R&D unit, and increased

scope of the company at large. Finally, diversi�cation imposes higher coordination costs (Hender-

son and Cockburn, 1996; Hueng and Chen, 2010), but (to repeat) allow �rms to spread the risks

of R&D into simultaneous projects (Nelson, 1959; Henderson and Cockburn, 1996).

4 Literature

4.1 Firm size and innovation

A number of distinct hypotheses were taken to data and were interpreted as tests of the Schum-

peterian hypothesis. An early line of literature focused on the relationship between �rm size and

R&D expenditures at the �rm level. These studies were primarily interested in whether R&D ex-

penditures, or R&D intensity grew at a more than proportionate rate along with �rm size (usually

measured by total sales or employment). An elasticity of R&D with respect to size that is larger

(resp. smaller) than one, or a positive (resp. negative) relationship between R&D intensity and

�rm size were interpreted as evidence supporting (resp. refuting) the Schumpeterian hypothesis.

With the increased availability of patent data, it became possible to use patent counts as indicators

of the output of R&D. A number of authors studied the relationship between R&D expenditures

and the number of patents granted to the �rm. In a similar vein, the �nding that the R&D elastic-
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ity of patents was larger than one (resp. smaller than one) was interpreted as con�rmation (resp.

repudiation) of Schumpeter3.

These earlier strands of the literature are best viewed as testing for the presence economies of

scale in R&D, either at the level of R&D investment decisions, or in the mechanisms by which R&D

inputs breed innovations. However, �nding mere scale e¤ects in either relationship falls short of

proving a direct link between �rm size and the productivity of the R&D enterprise. A more precise

test of the Schumpeterian claim on �rm size would ask the following question: Does the rate and/or

quality of innovations per R&D dollar (or R&D employment) increase or decrease with �rm size?

Here I review studies test this assertion directly, and also some others that can be interpreted to

provide equivalent �ndings. By and large, the literature does not support Schumpeter�s thesis, and

often provides evidence that R&D productivity, as measured by counts of patents or innovations

per R&D dollar, falls with �rm size.

Many authors studied the relationship between �rm size and R&D productivity by using counts

of patents as proxy for the output of R&D. Scherer (1965) studied the relationship between patent-

ing and �rm size for the 1955 cross section of 448 �rms in the Fortune 500 survey. He found that

the number of patents increased less than proportionally with �rm size for most of the sample,

with the exception of a small number of very large �rms. He also found that the number of patents

per sales revenue decreased with �rm sales. Johannisson and Lindstrom (1971) studied a sample

of 181 relatively large (500 employees or more) industrial �rms in Sweden. They showed that large

�rms�share of patent applications was less than their share of employment for most of the sample.

Bound et al (1984) examined the 1976 cross section of around 2600 U.S. manufacturing �rms and

found that smaller �rms obtained a larger number of patents per dollar of R&D expenditures. For a

sample of large U.S. �rms with sizeable R&D activities, Chakrabarti and Halperin (1990) reported

that patents and scienti�c papers per R&D dollar fell with �rm size. Moreover, smaller �rms in

their sample had a signi�cantly larger patent-R&D ratio, but a lower paper-R&D ratio than larger

�rms. Schwalbach and Zimmerman (1991) reported similar results for patent counts for a sample

of 143 German manufacturing �rms. Kim and Marschke (2009) used panels of �rms in the U.S.

semiconductor and pharmaceutical industries to show that patents per dollar of R&D expenditures

declined with �rm size in both industries.

To obtain a more direct measure of the rate of innovation, a number of specialized databases of

innovations were compiled. The U.S. Small Business Administration Innovation Data Base (SBIDB)

3For a detailed review of these early lines of work, see Kamien and Schwartz (1975).
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consisted of 8,074 innovations introduced to the U.S. market in 1982 and deemed signi�cant by

industry experts. Another was constructed by the Science Policy Research Unit (SPRU) of the

University of Sussex, which included 4,378 signi�cant innovations in the U.K. between 1945 and

1971. Two datasets were compiled by the Gellman Research Associates, one including 500 major

innovations introduced in six countries, and another containing 635 U.S. innovations.

Pavitt, Robson and Townsend (1987) used the SPRU database to show that both small (less

than 1000 employees) and large (more than 10.000 employees) �rms produce a larger number of

innovations per employee than medium sized �rms, leading to a U-shaped relationship between size

and innovation intensity. Freeman (1971) noted that small �rms accounted for a larger proportion

of important innovations than their share of o¢ cial R&D expenditures. A Gellman Research

Associates study revealed that small �rms produced 2.5 times as many innovations per employee

than their larger counterparts (Bomberger, 1982). The SBIDB database produced remarkably

similar numbers for this same statistic, with small �rms having 2.4 times as many innovations as

large �rms (Edwards and Gordon, 1982). Audretsch and Acs (1991) found a U-shaped relationship

between the average number of innovations and �rm size among �rms grouped into size classes, and

a negative relationship between the number of innovations per employee and size throughout the

entire size spectrum. Acs and Audretsch (1991a) concluded that the data supported the hypothesis

of a negative innovation-�rm size relationship as a general rule, except for a few very large �rms.

While the rate of innovative activity received abundant attention, the literature is not com-

pletely silent on innovation quality, either. Innovation databases introduce a quality dimension by

identifying signi�cant innovations as judged by industry experts. Hamberg (1966) and Jewkes et

al (1971) argue that large research labs are not responsible for the bulk of signi�cant inventions.

Shimshoni (1970) documents that small �rms in the scienti�c instruments industry played critical

roles in innovating several key instruments. A notable study on the food industry is undertaken by

Culbertson and Mueller (1980), who �nd that about half of all Putman Awards (which provides a

comprehensive compilation of the most signi�cant innovations in food manufacturing) were granted

to small �rms. These �rms also received 44% of all awards designated as "top honors". Stock, Greis

and Fisher (2002) study the determinants of a direct quality attribute (the data transmission rate)

in the modem industry, �nding that small �rms market products that have faster transmission rates

in a given year compared to the products of large �rms4.

4Note that this �nding can be due to higher quality or higher speed-to-market, or merely a result of marketing
technologies prematurely.
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A small number of studies have incorporated citations into empirical analysis of the size-

innovation relationship. Plehn-Dujowich (2009) �nds that both patents and citations received

per R&D stock falls with �rm size in a cross section of 1976 patents. Huang & Chen (2010) report

results which imply that citations received per R&D dollar falls with �rm size. These papers are

similar to the current one in their attempts to account for the variation in innovation quality. These

studies, however, su¤er from the drawbacks of using quality-adjusted patent counts, and do not

look into alternative quality measures. The current paper will argue that quality-adjusted patent

counts contain very little quality-related variation. They primarily re�ect the variation in patent

counts, indicating that problems with patent counts are imposed in data to the level of citations

(Atallah and Rodriguez, 2006).

4.2 Technological diversity

There is a sizeable and rapidly growing literature on the determinants and consequences of cor-

porate technological diversity. For a panel of European �rms covering the time interval between

1995 and 2000, Garcia-Vega (2006) shows that technological diversity a¤ects R&D intensity and

the number of patents positively5. Granstrand and Oskarsson (1994) show that greater diversi-

�cation is associated with greater sales and R&D growth. Miller (2006) �nds that technological

diversity is positively associated with a number of performance measures. Quintana-García and

Benavides-Velasco (2008) report that technological diversi�cation is positively associated with both

"exploratory" and "exploitative" innovation, with a more pronounced e¤ect on the former. Gam-

bardella and Torrisi (1998) �nds that greater sales and pro�ts are associated with higher techno-

logical diversity (but greater business focus). Nesta and Saviotti (2005) show that technological

diversi�cation and coherence are positively associated with the number of patents granted to the

�rm.

A number of papers have incorporated both scale and scope e¤ects in studies of R&D pro-

ductivity. Henderson and Cockburn (1996) use data on the research program level to show that

large �rms in pharmaceuticals are more innovative than small �rms, owing to economies of scope

as well as economies of scale. Similar to the current paper, they explore nonlinearity with respect

to scope and �nd that both highly focused and highly diversi�ed �rms are less productive in re-

5Authors have used a number of diversity measures, which commonly are inverted concentration indexes, and less
often simpler ones such as the number of technological �elds a �rm is active in. These measures will be discussed in
Section 6.
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search, implying an inverted-U. In a later study, Cockburn and Henderson (2001) use detailed data

on clinical research projects of 10 pharmaceutical companies. They �nd that the scale of R&D

positively a¤ects the probability of success, but this e¤ect is completely explained by the variation

in scope, i.e., the fact that larger development e¤orts are more diversi�ed. I look at whether such

a mechanism can be discerned from the current sample with the innovation measures I am using.

Huang and Chen (2010) also discover an inverted-U shaped relationship between technological

diversity and the number of patents and citations. This article is closely related to the current one

both in their examination of possible nonlinearity between diversi�cation and innovation, and their

use of citations to proxy innovation output. They use the total number of citations received by the

�rm�s patents as a dependent variable in some speci�cations6.

5 Indicators of innovation rate and quality

The problems with using patent counts as indicators a �rm�s innovative performance are well known

(see, for instance, Griliches, 1990). The number of patents per dollar of R&D is a combination

of two distinct e¤ects: a productivity e¤ect, indicating the rate at which R&D inputs produce

subsequent innovations, and a propensity e¤ect, indicating the rate at which innovations generate

patent applications. It has been noted that industries di¤er greatly in their propensity to patent

(Scherer, 1983). Thus, it is not clear whether results are due to di¤erences in R&D productivity

or di¤erences in propensities to patent across economic units7. Finally, patent counts or stocks

treat all patents as homogenous (Cohen and Levin, 1989; Acs and Audretsch, 1991b), hence fail

to account for the value and signi�cance of the underlying contribution. Using innovation counts

avoids the bias due to the heterogeneity in the propensity to patent across economic units, but

inherits the problem that all observed innovations are treated as homogenous, hence overlooks the

variation in the quality, signi�cance, and impact of innovations, as patent counts.

This article aims to contribute to this discussion by employing measures of patent quality that

were not previously utilized in this line of inquiry. I use three di¤erent indicators to measure patent

quality; a normalized count of citations, the importance index of Trajtenberg et al (1997), and the

6There is a growing line of literature that is interested in how �rm diversify, which emphasizes the role of techno-
logical relatedness in �rms�diversi�cation strategies. For an introduction, see MacDonald (1985), Teece et al (1994)
and Breschi, Lissoni and Malerba (2003). I also avoid a detailed discussion on the extant literature on the diversity of
product lines, which is indirectly related to the current topic in that product market and technological diversi�cation
occur in conjunction with one another. On this topic, also see Pavitt et al (1987), Pavitt (1998) and Scott (1993).

7For attempts to identify these two e¤ects separately, see de Rassenfosse (2010) and de Rassenfosse and van
Pottelsberghe de la Potterie (2009).
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quality index of Lanjuow and Schankerman (2004).

5.1 Citations

The number of citations made to a given patent is known to be good indicator of patent value

(Trajtenberg, 1990; Albert et al, 1991; Harho¤ et al 1999, 2003). An important di¢ culty in using

citations in large panels is that raw citations do not immediately lend themselves to comparisons

across time or across technology �elds. Citation counts exhibit variation across technology classes

and across time due to reasons not related to patent quality. In order to make meaningful com-

parisons across time and across technologies, it is necessary to standardize citation counts against

meaningful benchmarks. For this purpose, I normalize citations by dividing the citation count of

each patent by the third quartile (75th percentile) citation count of all patents in the same technol-

ogy class and with the same application year. Accounting for the variation across technology classes

ensures that idiosyncratic citation practices within technology �elds are not guiding the paper�s

main results. It is also expected that patenting frequencies are di¤erent across technologies, which

may lead patents to make too many citations simply because there is more prior art to cite. Ac-

counting for the variation over time is necessary since citations have been increasing over time due

to "mechanical" reasons (such as the variation over time in the number of patents to cite, and the

strictness of patent examination procedures), leading to a non-quality related in�ation in citations

(Hall, Ja¤e and Trajtenberg, 2001).

Normalized citation counts measure the quality of a patent relative to all others in a technology

class-year pair. I prefer the 75th percentile to the median (which could perhaps appear as the

more natural choice) since citation counts have a skew distribution, and there are a large number

of technology class-year pairs with very low medians8. Normalization with respect to percentiles is

preferred to normalizing with respect to means since the latter are sensitive to the presence of large

outliers, while the former are not. Citation percentiles in comparison groups are calculated using

the entire sample of available (more than three million) USPTO patents, not just those that are

matched to corporations. Similar normalization procedures have been used in di¤erent contexts by

Goodall (2009) and Lettl et al (2009), even though careless application of raw citations is common.

Note that it isn�t a priori clear whether normalization will "favor" large or small �rms. This

8Even though groups with zero medians are very few, medians representing one or two raw citations are common.
Normalizing using such low numbers can be misleding, hence higher percentiles are prefererred. Nevertheless, I
experiment with scores using medians and the 90th percentile, which do not produce di¤erent results.
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depends on the distribution of innovation activities of small and large �rms across technology classes

that produce more frequent citations. To the extent that increased �rm size implies a restructuring

of activity into �elds that are more (or less) frequently cited, the more the two sets of results will

di¤er, and normalization will assure higher reliability. Conversely, to the extent the assignment of

�rms into technological activities is random (independent of �rm size and diversity), the two set of

analyses are expected to produce more similar results.

Another issue to be resolved is time truncation. Observed citation counts are truncated since

citations keep arriving long after the date of patent grant, but only a fraction of overall citations are

observed at the time of data collection. Hall, Ja¤e and Trajtenberg (2001) correct for truncation by

estimating the distribution of citation lags. Once this distribution is estimated, one can approximate

the true citation count for an age-a patent by dividing the raw citation count by the fraction of

citations an average patent receives during the �rst a years after the application year. I correct raw

citation counts using the implied weights given in tables 6 through 8 in the same study. Note that

due this procedure, the number of corrected citations is no longer a count variable. During data

construction, citations are �rst corrected for truncation and the normalization procedure detailed

above is applied corrected citation scores.

Citation counts used in constructing quality measures are all are non-self citations, i.e., citations

that are made from a company to its prior patents are excluded.

5.2 Importance

In addition to normalized counts of citations, I also construct and use the measure of importance

developed by Trajtenberg, Henderson and Ja¤e (1997). This measure counts citations received by

the patent, and adds to this a fraction of the sum of second generation citations, i.e., the number

citations received by patent�s citing antecedents. For patent p,

Importp = Citationsp + � �
Pnciting(p)
j=1 Citationsj (1)

where j = 1; :::; nciting(p) indexes patents that cite p; and � is a discount factor that captures the

relative signi�cance of second generation cites. Following Trajtenberg, Henderson and Ja¤e (1997),

I choose � = 0:5, but also experiment with di¤erent � values. These analyses produce similar

results. All citation counts in the above formula are corrected for truncation before summation,

and the normalization procedure is applied to the importance measure itself. That is, importance
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index for each patent is divided by the 75th percentile of the measure in its technology class and

application year.

5.3 Lanjuow and Schankerman quality index

Finally, I use a slight variant of the patent quality index proposed by Lanjuow and Schankerman

(2004) (henceforth LS). The original index extracts the common factor of �ve indicators of patent

quality and scope: citations received within �ve years of patent application, citations received

within �ve to ten years of patent application, backward citations (citations made by the patent),

the number of claims made by patent application, and family size (the number of countries the

innovation is patented in). Since I do not have access to large-scale data on family size for USPTO

patents, I extract the common factor of the remaining four indicators described above9. The index

was separately estimated for six aggregate technology classi�cations (Chemicals, Computers and

Communication, Drugs and Medical, Electric and Electronics, Mechanical, and Others) and was

subjected to the same normalization procedure described above. Truncation is not an issue here,

as the index uses citations received in �xed time windows.

5.4 On observable innovation indicators

I use all quality indicators to construct two di¤erent types of proxies for a �rm�s innovative output.

The �rst is a quality-weighted patent count obtained per dollar of R&D expenditures, which can be

considered as a proxy for total output achieved per R&D dollar invested. The second is the average

quality of patented innovations at the �rm level. Hence, a total of six quality-related measures will

be examined: average quality per patent (
P
Q/patents), where Q 2 fcitations, importance, LSg

which will be called CP, IP and LSP, respectively. Quality-adjusted patents per R&D (
P
Q/R&D)

will be named analogously as CR, IR and LSR. For completeness and comparison, I will examine

the determinants of the patent-R&D ratio (PR) as well. For brevity, quality-adjusted patents per

R&D will be referred to as QR, while average patent quality will be termed QP.

To put various output measures utilized here and elsewhere in perspective, it is a good idea to

keep in mind the timeline of innovative activity, and observable indicators of innovation from its

di¤erent stages. It is instructive to look at the following natural decomposition of a quality-adjusted

9Lanjuow and Schankerman (2004) obtain family size for a random sample of a little over 100,000 patents, which
makes up a mere 20% of their entire sample of patents. Hence, including family size is impractical unless one wishes
to omit a large fraction of the patent database from the sample.
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patent count and the innovation indicators it "hides" within:

P
Q

R&D
=

P
Q

PAT
� PAT
INN

� INN
R&D| {z }

PAT/R&D

(2)

At the �rst stage of innovation, R&D investments are made. These investments lead to a number

of innovations (INN). If these innovations are observed, the number of innovations that results per

R&D dollar of expenditures (the third term in (2)) is a direct measure of output from this stage,

even though di¤erences in the social or private values of these innovations aren�t observed. Some

innovations are patented, and patents per innovation (second term in (2)) is a measure of the �rm�s

pure "propensity to patent". The second and the third term together produce the patent-R&D

ratio. Finally, the average quality of these patents (
P
Q/Patents) is an indicator of the average

value and impact of these patents. These three measures together produce total quality per R&D

dollar (
P
Q/R&D)10.

An important advantage of using average quality is that it avoids the well documented problems

with reported R&D expenditures, especially with those of small �rms (Kleinknecht, 1989). Also,

studying the variation in average quality o¤ers a means to look at innovative output net of the

propensity to patent. That said, we directly inherit some of the problems with using patents as

output measures. Most importantly, one doesn�t observe quality indicators for unpatented (and

unpatentable) innovations.

6 Empirical speci�cation

The main interest of the study lies on the e¤ects of size and scope di¤erences on innovation. The

baseline empirical model to be estimated is

log(yit) =  + �S logSit + f (TDit;�) + x
0
it� + �i + �t + uit (3)

10This decomposition also highlights a di¤erence between an "ideal" output indicator and the indicators we actually
observe. Ideally, we would like to observe innovations at the �rm level, along with a direct measure of the value of
these innovations. Since this is elusive, this study uses quality indicators of the value of patented innovations, rather
than that of the entire cohort of a �rm�s inventive output. Patent quality can deviate from innovation quality to the
extent that a �rm�s decision to patent an innovation is correlated with the expected value of the innovation.
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where yit is a measure of the R&D productivity of �rm i at year t; Sit is de�ated sales11, TDit

is a measure of technological diversity, and xit is a vector of controls for the it (�rm i, year t)

observation, including �rm and industry characteristics, as well as characteristics of the �rm�s

R&D organization and those of its patented innovations. I allow for nonlinearity with respect to

TDit by approximating f with a polynomial expansion, where � is the vector of parameters in the

expansion. The error term �i + �t + uit is the usual two-way error components speci�cation that

includes an unobservable and time-invariant �rm e¤ect, as well as year e¤ects. Year e¤ects control

for the overall variation in productivity over time, which can occur due to aggregate economic

conditions, changes in the legal environment and innovation policy12. It could be more desirable

to use lags of �rm size and the spillover pool instead of their current values. Regressions with lags

of these variables produce estimates that are very similar to those with current values. Hence, I

report results using current sales and spillovers to avoid the cost of losing an additional year of

observations.

Equation (3) is estimated by using measures of innovation performance described in the previous

section. A general-to-speci�c speci�cation search is performed in order to account for possible

nonlinearity with respect sales, technological diversity and other key independent variables. For

all dependent variables used, as well as for sales, a Box-Cox test indicates that a logarithmic

transformation gives the best �t, which is natural for both skew and size-related variables. For all

speci�cations, a Hausman tests rejects the null hypothesis that permanent e¤ects are random, hence

a �xed e¤ects (within) speci�cation is adopted. To account for a serially correlated component in uit;

all equations are estimated after performing a correction for �rst order serial correlation (Bhargava,

Franzini and Narendranathan, 1982; Baltagi and Wu, 1999). Year e¤ects are controlled for using

year dummies.

6.1 Independent variables

All speci�cations include a measure of R&D intensity (in logs), �rm age, and the �rm�s capital-

labor ratio (in logs). R&D intensity is calculated by dividing contemporaneous R&D to net capital.

The use of contemporaneous R&D (rather than stocks) follows extensive evidence on the R&D-

patents relationship that current patents mostly result from current R&D. The capital-labor ratio

11Using alternative measures of �rm size, such as employment and net capital gives results that are qualitatively
identical to current ones.
12A few important policy changes regarding patent law occur during the sample period. For a review, see Ja¤e

(2000).
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is simply net capital assets divided by the number of employees. Capital-intensity may a¤ect both

the incentives to innovate and the incentives to patent, hence it may be an important confounder

(Kim, Lee and Marschke, 2009b). When the dependent variable is average quality, I also include

the �rm�s patent-R&D ratio as a regressor, which controls for the �rm�s patent yield per dollar of

current R&D investments. In all speci�cations, I include the logarithm of industry size (total value

of shipments) in the �rm�s 3-digit SIC industry classi�cation, as well as the annual compounded

growth in industry size. The former is intended to control for size e¤ects and demand conditions at

the industry level. The latter captures e¤ects of industrial economic conditions, such as industrial

expansion and decline.

Remaining controls are introduced below.

6.1.1 Technological diversity

Technological diversity of the �rm is measured as one minus the concentration of the �rm�s patenting

activity across di¤erent technological classes, based on the Her�ndahl index. That is,

TDit = 1�
XK

k=1

�
P kit
Pit

�2
where k 2 f1; :::;Kg are USPTO technology classes, P kit is the number of it patents in technology

class k; and Pit is the total number of it patents. The idea is that a more diverse research activity

that spans a large number of technological �elds will be observed in the �rm�s patents being spread

out among a larger number of technological classi�cations. Similar measures of diversity have

been previously employed by researchers. Gambardella and Torrisi (1998) and Leten et al (2007),

among others, use a similarly constructed Her�ndahl-based index, while Garcia-Vega (2006) (and

few others) employ an entropy-based index of diversity. Granstrand and Oskarsson (1994) use both

to measure spread of a company�s engineering employment across �elds of specialization. Both the

Her�ndahl and entropy indexes are indexes of concentration, hence serve similar purposes.

Since the diversity measure uses knowledge of a �rm�s patents, low patent counts are naturally

associated with low diversity. This can be considered as a "natural" case of non-diversi�cation

rather than a bias in the measurement of diversity, and it is normal to attribute zero diversity

to a �rm with one or zero patents in a given year. However, it is not desirable for all results

to be driven by a large number of low-patent, hence, low-diversity observations, especially while

investigating average patent quality. For this purpose, I include separate dummies for having one
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and two patents in a given year in each regression.

6.1.2 Spillovers

Explanations for the di¤erences in small and large �rm productivity include di¤erences in ways

small and large �rms bene�t from spillovers. Thus, it is also useful to directly control for such

spillover e¤ects. To this end, I include a weighted sum of external R&D expenditures in some

speci�cations, which is calculated as

SPit = log
X

i6=j
wijRSjt

where RSjt denotes the R&D stock of �rm j during year t; and wij is a measure of the technological

proximity between �rms i and j. I follow Ja¤e (1986), and calculate wij as

wij =
T 0iTj

kTik kTjk

where Ti is a �� 1 vector that contains the number of patents of �rm i in USPTO technology class

k 2 f1; : : : ; �g in its kth element. Ti can be called the "technological position vector" of �rm i; and

wij is the uncentered correlation between vectors Ti and Tj . Thus, wij is a metric in the technology

space and captures the coincidence of patenting activities of �rms i and j across USPTO technology

classi�cations13.

6.1.3 Appropriability

As an imperfect indicator of appropriability conditions, I use the fraction of self-citations received

by the �rm�s patents (Trajtenberg et al, 2002). This ratio gauges the extent the original innovator,

and not others, capture future bene�ts from innovation. I calculate the ratio at the �rm level, i.e.,

by dividing total self-citations to total citations received for each �rm-year. This is not a direct

measure of the fraction of total economic rents appropriated by the original innovator. However, it

does quantify the di¢ culty of imitation and backward engineering.

13See Ja¤e (1986) for additional properties of this proximity metric.
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6.1.4 Technological opportunity

To capture and control for changes in technological opportunity, I include the annual growth of

patenting in the �rm�s technological neighborhood. This variable is calculated as the annual com-

pounded growth of the sum
P
i6=j wijPjt for �rm i; where Pjt is the number of patents of �rm

j 6= i, and fwijg are the proximity measures that were introduced above. E¤ects of technological

opportunity aren�t straightforward to study in isolation. Previous work attempted to control for

them using group e¤ects, such as dummies for industries or technology classes, or dummies for

group-time pairs (Ja¤e, 1986, and others). The growth of innovation activity in a �rm�s technolog-

ical neighborhood has a straightforward interpretation in terms of technological opportunity, as it

captures the increased (collective) incentives to innovate and the abundance of innovations during

periods of high opportunity (Breschi, Malerba and Orsenigo, 2000). Note that we are interested

more in netting out the e¤ects of technological opportunity from remaining coe¢ cients rather than

estimating its precise e¤ect.

6.1.5 Visibility

It is possible that a large �rm receives more citations simply because its patent portfolio is more

visible to potential citing �rms14. This could bias results toward a more favorable outcome for large

�rms, as increased visibility would be mistakenly interpreted as higher patent quality. To fend o¤

this possibility, I control for a measure of a �rm�s visibility to others. For the �rm i and year t

observation, my visibility measure is the number of �rms (excluding �rm i) that have cited �rm i�s

patents until year t (excluding year t)15.

7 Data sources and description

Information on patents and citations come from the latest edition of the NBER patent and citations

data �le (Hall, Ja¤e and Trajtenberg, 2001). This edition contains all USPTO patent applications

and all citations made to these patents until 2006. All data on annual R&D expenditures, sales,

and other �rm level variables are taken from the historical Compustat panel compiled by the same

authors. I use the latest edition of the match between USPTO assignee names and Compustat

14 I thank Pelin Demirel for reminding me of this possibility.
15Note that if we were interested in the "impact" of innovations alone, it wouldn�t be desirable to net out visibility

e¤ects from coe¢ cients, since increased visibility would be a natural part of a �rm�s external impact. This argument
does not necessarily hold when one is interested in quality.

18



(Bessen, 2009). I follow the convention in the literature and calculate R&D stocks as a perpetual

inventory with 15% annual depreciation. Since Compustat does not provide the birth year of �rms,

�rm age is calculated from the �rst year a �rm appears on Compustat tapes. While this is a noisy

measure of age, it is very close to the actual foundation year for most �rms, and errors will be

sizeable only for very old ones. Firm age is used as a natural logarithm which should render such

errors minimal16.

Recall that raw citations are corrected for truncation using the estimated correction weights in

Hall et al (2001). This procedure makes it necessary to leave a su¢ cient time gap between the last

year studied in the sample (here: 1995) and the �nal year we have access to citation data (2006),

since predicting total citations using only a few years of observed citations can be very misleading17.

This time window is 11 years in the current study. On average, a patent receives 48.6% (Drugs

and medical) to 68.3% (Computers and communications) of its lifetime citations during the �rst

11 years after application depending on its technological category.

An interesting observation about quality indicators is that they are not persistent over time,

re�ecting that eventual success of patented innovations are inherently unpredictable and contain a

fair amount of noise. In simple OLS regressions of (log) average quality on its �rst lag produces lag

coe¢ cients ranging from 0.30 (for LSP) to 0.35 (for IP), and explains between 9.5% to 12.6% of

the variation in current quality. In contrast, the lag coe¢ cient is 0.82 for patents per R&D (PR),

0.91 for patents and 0.99 for R&D expenditures (respective R2 values are 0.67, 0.82 and 0.98). For

quality-adjusted patents per R&D, coe¢ cients range from 0.60 to 0.71 (R2 is between 0.38 and

0.51). As expected, innovation quality is less persistent and hence, less predictable than innovation

quantity and innovation inputs. It is also noteworthy that the persistence of the series falls as one

moves from input to output indicators, and from crude output indicators to �ner ones.

Data on industry level variables are taken from the NBER-CES Manufacturing Industry Data-

base (Bartelsman and Gray, 1996). The dataset contains annual data on output, employment,

various indicators of costs, investments, capital stocks, and other variables for each 4-digit SIC

classi�cation in U.S. manufacturing between 1958 and 2005. I use the annual value of shipments

for each industry as a measure of industry size. Annual industry growth for each SIC classi�cation

is computed as the (log-compounded) growth rate of the industry�s value of shipments. Note that I

16 I thank Bronwyn Hall for pointing this out.
17Also note that for many patents of great signi�cance (and with high lifetime citations as a result), one may expect

fewer citations after the initial few years after grant, as these innovations could take longer time to be understood,
adopted, and then cited.
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use the 3-digit SIC as the industry classi�cation, and aggregate the value of shipments in relevant

4-digit SIC classes to the 3-digit classi�cation to get industry size.

All variables in current dollar values are de�ated using the GNP de�ator. After deleting large

outliers (jlog xit � log xit�1j > 2), �rms with only a single year in the data and removing observa-

tions with missing variables, the remaining sample consists of nearly 11000 observations covering

the 20 years between 1976 and 1995 (sample sizes di¤er slightly across speci�cations). One year

of observations are lost due to the AR(1) correction, and sample sizes for di¤erent speci�cations

di¤er slightly depending on the quality indicator used. All aggregations regarding "external" �rms

have been undertaken using the largest possible sample at hand. Throughout the paper , the math-

ematical operation "log" is used to denote natural logarithms. Sample statistics for all variables

are provided in Table 1. Table 2 reports correlations between independent variables and Table 3

provides correlations between innovation indicators.

8 Results

8.1 Quality-adjusted patents

Table 4 reports results on the determinants of quality-adjusted patents per R&D. I also study

patents per R&D (unadjusted for quality) for comparison. The dependent variable in columns one

through four are the logarithms of PR (patents per R&D), CR (citations per R&D), IR (importance

per R&D) and LSR (LS index per R&D), respectively. In all speci�cations, the coe¢ cient of sales is

negative and signi�cant, indicating that both quality-adjusted patents (QR) and patents per R&D

(PR) fall with �rm size. Thus, using quality adjustments on patents does not lead to a di¤erent

conclusion than what was previously known on relationship between size and patents per R&D.

Interestingly, the coe¢ cient of the size term does not signi�cantly di¤er across speci�cations. The

coe¢ cient is not greatly a¤ected when patents are interchanged with quality-adjusted patents, as

well as when we use (arguably more accurate) patent quality indicators, citations, importance, and

the LS quality index. Possible implications of this �nding will be discussed below.

The coe¢ cients of the polynomial expansion for technological diversity indicate a highly non-

linear diversity-QR relationship, with signi�cant coe¢ cients up to the cubic term. Higher order

polynomial terms tend to be insigni�cant for all speci�cations, and do not alter the shape of the

polynomial signi�cantly. The cubic term has a positive coe¢ cient, while the coe¢ cients of the

remaining terms are negative. The coe¢ cients of the polynomial terms are consistent with an
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nearly U-shaped relationship between technological diversity and QR: The S-shape consists of a

slight increase in the dependent variable as diversity increases from zero to about 0.1, then a fall until

around 0.5, and then an increase between diversity values in 0.5 and 1. This contradicts previous

studies that also investigated possible nonlinearity between diversity and innovation (Henderson

and Cockburn, 1996; Huang and Chen, 2010). It is important to note that this di¤erence isn�t

simply due to the inclusion of the cubic term. Excluding this term (while keeping the rest of the

speci�cation intact) also yields a U-shaped relationship that increases in the larger part of the

support of diversity variable (coe¢ cients are 0.258 for the second, and -0.054 for the �rst order

terms). Hence, we �nd that higher technological diversity is associated with higher QR for most of

the variable�s support, with a slight S-shape for the lower end of the diversity scale.

All independent variables except visibility, technological opportunity, industry size and indus-

try growth have signi�cant coe¢ cients in all regressions. Most notably, I �nd that the coe¢ cient

of R&D intensity is negative and signi�cant; �rms with higher dedication to R&D obtain fewer

patents and attain lower total quality per R&D dollar. Firm age and capital intensity are nega-

tively associated with patents and quality-adjusted patents per R&D, while the spillover pool and

technological opportunity have positive impacts on these variables. Industry size has a positive co-

e¢ cient in column 1 (PR), but the coe¢ cient is insigni�cant in the remaining columns, where the

dependent variable uses quality-adjusted patents. In all columns, the coe¢ cients on the quadratic

speci�cation for appropriability indicate a statistically signi�cant inverted-U shaped relationship

with all dependent variables. The visibility of the �rm has a signi�cant coe¢ cient only in column

4 (LSP) and only at the 10% signi�cance. The negative coe¢ cient of this variable is unexpected,

and it is most likely due to the high within-�rm persistence of this variable.

8.2 Quality vs. quantity

The most striking aspect of the regressions in Table 4 is that the determinants of patents per

R&D, and those of quality-adjusted patents per R&D are very similar. As long as one is counting

patents, it appears that almost nothing new is learned by counting them after a quality adjustment.

Coe¢ cients are also insensitive to the use of di¤erent quality indicators: CR, IR and LSR all give

coe¢ cients for key variables that are very similar to their counterparts for PR, both in sign and in

magnitude. Recall that QR 2 fCR, IR, LSRg is simply the product of QP 2 fCP, IP, LSPg and

PR. Our results may indicate that most of the variation in quality-weighted patents is due to the

variation in patent counts themselves, and has little to do with patent quality. The high correlation
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coe¢ cients between these two sets of indicators (Table 3) also support this claim. Correlations

between patents per R&D and its quality-weighed counterparts range from 0.79 to 0.91. The

correlations between average quality indicators and PR, on the other hand, are small and negative,

ranging from -0.03 to -0.07.

By and large, it seems that citation-weighted patent counts re�ect the behavior of the patent-

R&D ratio to a much greater extent than they re�ect patent quality. Hence, these measures fall

short of representing true quality e¤ects, and seem to directly inherit problems with simple patent

counts. As a result, Table 4 may be highlighting the determinants of innovation quantity by

looking at quality-adjusted patents, and not telling us much about patent quality. It is therefore

more meaningful to interpret results in Table 4 as evidence regarding the rate of a �rm�s patenting

activity, rather than overall innovation quality. Note that a similar point, in a di¤erent context,

was also raised by Lanjuow and Schankerman (2004). While their primary focus was on using their

quality index to explain trends in research productivity, they also report that R&D expenditures

failed to explain the variation in innovation quality among innovating �rms in the U.S. These

authors test whether including innovation quality improves the explanatory power of standard

regressions of �rm performance, but do not provide a detailed account of the determinants of

innovation quality at the �rm level. Atallah and Rodriguez (1996) raises the same concern with

such counting procedures as well. I study average patent quality in detail in the next subsection.

8.3 Average patent quality

I now turn to the determinants of average patent quality at the �rm level. Table 5 reports regres-

sion results in which indicators of a �rm�s average patent quality are dependent variables. The

speci�cations are similar to those in Table 4, except that the patent-R&D ratio is included as an

additional regressor. The polynomial in diversity is reduced to a quadratic form, as higher order

terms are insigni�cant in these regressions.

In columns 1 through 3, I study the determinants of CP (citations per patent), IP (importance

per patent) and LSP (LS index per patent), in the given order. Taking these regression at face

value, the most notable result is that the coe¢ cient of �rm size is insigni�cant in all columns at

all reasonable levels of signi�cance, indicating that �rm size has no bearing on the average quality

of a �rm�s patents. The e¤ect of technological diversity on average innovation quality is consistent

with an inverted-U pattern. However, both polynomial terms are statistically signi�cant only in

column 3 (LSP). Neither polynomial coe¢ cient appears to be signi�cant in column 1 (CP), while
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only the �rst order term is statistically signi�cant in column 2 (IP). Hence, there is evidence for

an inverted-U type relationship between technological diversity and innovation quality, but the

evidence is somewhat weak unless LSP is considered to be the preferred quality indicator. Both

the insigni�cance of �rm size and the inverted-U pattern with respect to technological diversity are

robust to alternative speci�cations and estimation techniques that will be explored below18.

Notably, R&D intensity has a positive and signi�cant coe¢ cient in all columns. Along with

the evidence from Table 4, this can be interpreted as evidence for a quality-quantity trade-o¤ in

innovation. As R&D e¤orts (per capital asset) increase, �rms obtain fewer patents (and fewer

quality-adjusted patents) per R&D dollar, but the average quality of these patents increases. R&D

intensity is conducive to higher quality innovation, while the rate of innovation falls with it. The

relationship between appropriability and patent quality is an inverted-U (except in column 1 where

only the squared term is signi�cant), similar to the results in Table 4. Visibility, again, has the

unexpected negative sign.

8.4 Is patent quality unpredictable?

A number of important observations are in order. First, it is easy to observe that innovation

quality is less predictable than innovation quantity, which renders it more di¢ cult to explain its

determinants. Many variables with statistically signi�cant e¤ects on quality-adjusted patents per

R&D (Table 4) fail to account for quality di¤erences, as indicated by the fewer explanatory variables

with signi�cant coe¢ cients in Table 5. The explanatory power of these regressions are much lower

compared to their counterparts in Table 4 as well. Our regressions can explain only 3.1% of the

variation in log(CP), 2.6% of the variation in log(IP) and 3.8% of the variation in log(LSP). It

appears that patent quality has a large stochastic component, presumably because much of the

variation in average patent quality is due to chance19.

The low explanatory power of these regressions could indicate that innovation quality is ran-

domly distributed across �rms to a large extent, and little can be learned about its determinants.

A number of additional possibilities remain, though. First, recall that quality indicators for each

patent are normalized with respect to the 75th percentile of the quality distribution in the same

18 It is worth noting that the insigni�cance of �rm size is not due to the presence of the diversity measure. The coef-
�cient of �rm size remains highly insigni�cant in regressions where average quality is not conditioned on technological
diversity.
19 It is also unlikely that unobserved permanent e¤ects are responsible for quality di¤erences, since these are

di¤erenced away in the �xed e¤ects speci�cation.
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technology class and with the same application year as the patent in question. This procedure natu-

rally reduces the variation in quality indicators. One possibility to consider is that our normalization

procedure may be removing too much information. I examine this possibility by studying the de-

terminants of non-normalized quality indicators while controlling for backward citations. While

being a poor substitute to normalization, this can also be considered as an input-output exercise.

If quality indicators (which are all based on forward citations to varying degrees) are measures

of the innovator�s intellectual output, backward citations would qualify as intellectual inputs for

innovation20. This strategy greatly improves regression �t (R2 is 0.19 for log(LSP)) and gives

similar regression coe¢ cients for key variables. Firm size remains insigni�cant, the technological

diversity polynomial has similar coe¢ cients, and the positive e¤ect of R&D intensity on average

quality is retained, again with a similar coe¢ cient to its counterpart in Table 5. Previous �ndings

on appropriability carry through these regressions as well.

Second, the variation in quality may be absent only in the within dimension of the data. To

explore this possibility, I estimate the main regression equation using a between �rm speci�cation.

A larger variation exists between �rms in normalized quality indicators (R2 is at the order of 0.13).

The coe¢ cient of �rm size remains insigni�cant, and the polynomial in technological diversity is

again consistent with an inverted-U pattern. R&D intensity has a positive and signi�cant coe¢ cient,

which is comparable in magnitude to its counterpart in within regressions. Firm age has a negative

e¤ect on average quality, and we retain similar results to Table 5 for appropriability. The coe¢ cient

of visibility is positive, con�rming the argument that the within-�rm persistence of this variable is

responsible for the unexpected coe¢ cients previously obtained.

Third, taking averages of our quality indicators for each �rm may be destroying valuable infor-

mation about the entire spectrum of quality within �rms. To highlight this, Figures 1 and 2 show

scatterplots of patent quality (the logarithm of normalized LS index) against �rm size at two dif-

ferent levels of aggregation. Figure 1 is generated using �rm level data, with each dot representing

a �rm-year observation. Here, the vertical axis represents the logarithm of average patent quality

at the �rm level. Figure 2 plots patent quality (again, the logarithm of the normalized LS index)

against �rm size at the patent level, each dot representing a single patent. Comparing these �gures,

it is easy to see the consequence of taking averages. Figure 1 indicates that innovation quality in

small �rms is more dispersed around the mean, and dispersion of average quality falls as �rms grow

larger. In fact, average patent quality converges roughly to unity for the largest �rms in our sample,

20 I thank Adam Ja¤e for pointing this out.
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which indicates convergence close to the 75th percentile in the respective group21. Figure 2, on the

other hand, reveals a di¤erent picture. As �rms grow larger, the variety of patented innovations

grows toward both ends of the quality spectrum. The scatterplot indicates that the ability to obtain

higher quality patents increases with �rm size on nearly the entire �rm size spectrum. The �gure

also indicates that large �rms also obtain a larger number of "worthless" patents compared to small

�rms, which dilute the �rm�s quality average. The tendency for patent variety to increase with size

is reversed for the very largest �rms in the sample, whose patents exhibit lower dispersion around

mean quality22.

From these observations, one may be inclined to draw the conclusion that large �rms are more

successful in innovation due to a higher propensity to produce "top quality" patents. However,

such an interpretation would be unwarranted. A careful examination of Figures 1 and 2 suggests

that they are not at odds with the hypothesis that patent quality is distributed randomly across

�rms of di¤erent sizes, and they do not contradict our previous conclusions on the determinants

of average quality. Consider the extreme scenario that innovation quality is entirely random, and

that each patent draws its quality from a common probability distribution. Then, a large �rm will

get more draws at the upper tail of this distribution owing to its larger number of patents (not

necessarily larger per R&D, per employment or per sales). As a result, the average quality of its

best patents will be higher as well. An interesting �gure is given in Figure 3, which plots the quality

index for each patent against the logarithm of the patent portfolio size of the �rm that patented

the innovation. The association between the two variables appears to be almost entirely random.

All quality levels are associated with almost all patent counts at the patent level, except for �rms

with the largest patent portfolios (who obtain a slightly more selective set of patents). The �gure

supports the idea that the shape of the scatterplot in Figure 2 is due to the increased patent counts

of large �rms, and not due to size di¤erences.

This claim can easily be put to test using arguments that do not appeal to mean quality of the

�rm�s entire patent portfolio. From Figure 2, it is clear that a regression of the average quality of

a �rm�s "top" patents (say, the average quality of its 5, 10 or 20 patents with highest quality) on

21One may consider the possibility that this is a statistical �uke due to the potential "dominance" of some technology
classes by a small number of very large �rms. This isn�t the case, as indicated by the scatterplots of quality normalized
with respect to di¤erent percentiles, which do not converge to unity for the largest �rms. Also recall that percentiles
of quality distributions are calculated for all patents in the USPTO sample in a given year, not just those that are
matched to corporations.
22To provide a more precise statistic, a regression of the coe¢ cient of variation of patent quality, calculated for each

�rm, on a polynomial in sales reveals that the variation increases and then falls with size, with the highest variation
around 166 million in sales.
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�rm size will produce a positive coe¢ cient. However, if the distribution of quality across small and

large �rms is random, this e¤ect should be completely explained by the variation in the number of

patents, if we control for the latter. The data clearly supports this claim. Without conditioning on

the number of patents, regressions of the average quality of the top 5, 10 and 20 patents of each

�rm (using the same speci�cation and methods in Table 5) produce the expected positive coe¢ cient

for �rm size. Controlling for the number of patents, however, the e¤ect of �rm size is completely

picked up by the coe¢ cient of patents, and �rm size is driven into insigni�cance. Hence, higher

patent quality at the higher end of the quality distribution in large �rms is simply due to their

larger patent portfolios, and not due to size e¤ects per se23.

Fourth, it is possible that important aspects of innovation quality may be lost in annual data,

and it may be preferable to aggregate a �rm�s innovative output over longer time periods. Note that

this is a noise reduction exercise; if annual stochastic shocks that are part of patent quality have low

covariance across periods, their average over T years will have lower variance than each individual

shock if they also have common variance24. For this purpose, I construct a three-period panel

consisting of the �ve-year periods between 1976-1980, 1981-1985 and 1986-1990. Flow variables

(patents and quality-weighted patents, R&D, sales, industry size) are summed, and stock variables

(capital, employment, spillover pools) are averaged for each �ve year period. Firm age and visibility

are taken as the age and visibility at the beginning of the period, while technological diversity is

re-calculated using all patents of the �rm in the �ve year interval25. These regressions increase

explanatory power of the baseline speci�cation, with regressions explaining 6.6% to 8.2% of the

within variation in normalized patent quality (compared to 2.6% to 3.8% in Table 5), which still

remain quite low. It could be that annual shocks to patent quality have non-negligible positive

covariance over time, in which case the variance of averaged shocks need not be much smaller that

the average variance of the shocks. Recall that I control for serial correlation in errors, which

allows consistent estimation of parameters under correlated shocks, but this need not increase the

explanatory power of regressions. These regressions produce qualitatively identical results to those

23This is also a useful exercise in order to see which factors lead �rms to increase the quality of their "best"
patents, holding �rm size and the number of patents constant. R&D intensity has a large, positive coe¢ cient in these
regressions. They give mixed results on the e¤ect of technological diversity, depending on whether the sample is
restricted to �rms with at least n patents for regressions that use the average quality of the �rm�s top n patents.
Previous results regarding appropriability conditions carry though these analyses as well.
24Similarly, under di¤erent variances of shocks, the average shock will have lower variance than the average variance

of annual shocks.
25 I also undertook regressions in which all regression variables are directly averaged across the relevant �ve year

window. These regressions do not produce di¤erent results.
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in Table 5.

These analyses reveal that quality is to a large extent randomly distributed across �rms, but

the distribution is not completely stochastic: technological diversity and R&D intensity a¤ect

innovation quality, holding �rm size and remaining controls constant. However, there seems to be

less in the hands of �rms to a¤ect the quality of their innovative output. Quality is distributed

randomly across innovating �rms of di¤erent sizes, a result that appears to be robust across many

speci�cations. The Lanjuow and Schankerman (2004) suggestion that innovation quality is most

useful after taking averages seems to have mixed appeal: too much information is lost by taking

averages at the �rm level, but taking averages over time somewhat reduces the noise in the quality

measure. Even then, a substantial stochastic component remains. Appropriability conditions also

a¤ect innovation quality, which will be highlighted further in the next subsection.

8.5 On appropriability

The paper�s results on appropriability conditions merit some emphasis. First, appropriability has

statistically signi�cant e¤ects on both the rate (Table 4) and quality (Table 5) of innovation. Also,

and uniquely among our explanatory variables, its e¤ects on the rate and quality of innovation are

remarkably similar. This is among the most robust results of the current paper: it is observed in all

main and exploratory regressions detailed above. The estimated relationship is consistent with an

inverted-U type relationship between appropriability and both the rate and quality of innovation.

According to the point estimates, the "peak" innovation rate occurs at the self-citation rate of

0.39, and peak innovation quality is observed at the self-citation rate of 0.40. When all alternative

estimation strategies discussed in the above subsection are considered, this "optimum" self-citation

rate varies between 0.32 and 0.40. Therefore, peak rate and quality for innovation occur at very

similar self-citation rates. Hence, these results may indicate a genuine and strong productivity

e¤ect.

The �nding that increased appropriability is initially conducive to both higher innovation rate

and higher innovation quality is intuitive, as better appropriability conditions will provide better

incentives to innovate and to patent high quality innovations. However, too much appropriability is

detrimental to innovation. The obvious interpretation of this �nding is that while an initial increase

in patent protection (which will inadvertently vary across sectors and technologies even if the overall

legal environment were identical) is conducive to innovation, too strong a patent protection can

be detrimental. This �nding echoes a concern that has been stated by many previous researchers,
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both in empirical and theoretical work (Lerner, 2002; Gallini, 1992, 2002).

However, it is also possible that the appropriability indicator (which is the rate of self-citations

at the �rm level) is acting as a proxy for a more fundamental attribute of the �rm�s technological

environment. Keep in mind that di¤erent meanings can be attributed to, or will be correlated with,

the rate of self-citations at the �rm level. One such property is the cumulativeness of innovation;

the extent innovations build on existing capabilities rather than being independently conceived.

On the other hand, subscribing to a somewhat unusual interpretation of patent citations, it is easy

to imagine that the rate of self-cites partly represents a �rm�s relative position with respect to its

technological rivals. Increased self-citation rate (which also means lower rate of citations from other

�rms) could indicate that the �rm in question is among the few that can capitalize on existing

opportunities in the relevant technology �eld, and there aren�t many other �rms (competing or

collaborating) that can dip into the same opportunity well. This interpretation would lend itself to

an argument on the relationship between competition and innovation, between which many authors

have found an inverted-U type relationship (Aghion et al, 2005; among others). In short, the e¤ect

of the self-citation rate on the rate and quality of innovation opens up interesting possibilities and

questions for detailed future investigation.

9 Conclusion

Results of the paper are at odds with the Schumpeterian claim that large �rms are the primary

engine of innovation. I �nd evidence that innovation quality is randomly distributed among �rms

of di¤erent sizes. Neither small, nor large �rms have inherent advantages in producing higher

innovation quality. The paper emphasizes that patent quality has a large stochastic component,

rendering its analyses di¢ cult, as few variables are successful in explaining quality di¤erences

within and between �rms. Indeed, investigating the determinants of innovation quality is a bit

like looking for a needle in a haystack. However, I also �nd that the distribution of quality across

innovating �rms is not entirely random: It is a¤ected by R&D intensity, technological diversity

and appropriability conditions. It is observed that large �rms have higher propensities to obtain

"top quality" patents compared to small ones, but this is merely a result of the size of their patent

cohorts, which supports the random distribution hypothesis.

The paper also highlighted problems with treating quality-adjusted patent counts as indicators

of pure quality, as there is ample evidence that they are primarily driven by patent counts. It
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is best to treat quality-adjusted patent counts as alternative indicators of the rate of innovation,

and not innovation quality. As found elsewhere, patents per R&D fall with �rm size, and so do

quality-adjusted patents per R&D. The relationship between quality-adjusted patents per R&D

and technological diversity is highly non-linear, with polynomial expansion terms signi�cant up to

the cubic term. The shape of the polynomial is such that it increases for most of the support of

the diversity variable, mostly indicating a U-shaped relationship, with a small S-shape at the lower

end of the diversity scale.

Alternative explanations for the stochastic nature of innovation quality need to be highlighted.

One intriguing possibility is that innovation quality is inherently unpredictable to a great extent,

and di¤erences across �rms are mostly due to stochastic events that are outside the �rm�s control.

Another possibility is that determinants of innovation success lie elsewhere: the �rm�s organizational

choices, technological capabilities that are not visible in aggregate patent or accounting data, or

communication channels through its management hierarchy. Examining such properties require a

level of detail that immediately faces severe data constraints, but much can be accomplished by

focusing on a carefully selected sample of industries or technologies, which will allow data collection

for a small sample of innovating �rms. However, we can comfortably rule out explanations that

are due to unobserved permanent characteristics, and characteristics that are directly related to

the size of the innovating �rm. Finally, it is possible, however unlikely, that results of the paper are

driven simply by patenting choices of innovating �rms. If �rms�patenting decisions with respect to

the expected quality of innovation (and other characteristics) are uniform across innovating �rms,

this would lead to similar relationships between �rm characteristics and innovation quality that

we have observed. This is an unlikely explanation as highlighted by numerous studies that point

to di¤erences in the patenting practices and motives of small and large �rms (Arundel and Kabla,

1998; Arundel, 2001; Leiponen and Bima, 2009; among others).

On the other hand, it is perhaps more likely that quality di¤erences, and the quality distribution

within �rms are driven by more fundamental characteristics of the technological environment �rms

operate in. Future work needs to examine how the links between R&D investments, innovation

rate and innovation quality is determined and conditioned by fundamental characteristics of the

technologies involved, such as their current stages during the technology (and not just industry) life

cycle, and the cumulativeness, radicality and sequentiality of innovation in the related technology

�eld. There is some previous work on industry characteristics that are most conducive to inno-

vation and how these characteristics condition the size-R&D-innovation relationship, but research
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on these issues is hampered by the lack of empirical measures for important theoretical constructs

(Trajtenberg et al, 1997). Future research should also focus on uncovering and measuring the exact

technological properties that determine, and condition the relative contribution of small and large

�rms.

It is surprising that innovation quality has been studied so scarcely compared to other aspects of

innovation. Results of the current paper have several implications for innovation quality at the �rm

level, and suggests future work in several additional directions. An important recommendation of

the current paper is that further studies of innovation quality need to pay focused attention to the

entire distribution of innovation quality within �rms, not just its average. Furthermore, by studying

all USPTO patents that are assigned to manufacturing companies, this paper focused on large-scale

and generalizable properties of innovation quality. While ample e¤ort has been expanded to ensure

comparability of quality indicators across di¤erent technologies, this general view certainly hides the

�ner details of the innovation process in each industry and the technologies behind its products.

The trade-o¤s between generalizability and speci�city should be evident. Examining innovation

quality at smaller levels of aggregation, such as within speci�c and narrow technology �elds, is a

promising avenue and would supplement current analyses.

The article�s results regarding appropriability conditions open up interesting questions as well.

While it is possible to interpret these �ndings as pure productivity e¤ects of the strength of IP

protection, alternative explanations are possible, and future research needs to disentangle the sep-

arate roles of characteristics that may be correlated with the appropriability measure used in the

current paper, the rate of self-citations.
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Figure 1: Scatterplot of average patent quality (logarithm of the Lanjuow and Schankermann
index, normalized) against �rm sales, plotted at the �rm level. Each dot represents a �rm-year
observation.
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Figure 2: Scatterplot of patent quality (logarithm of the Lanjuow and Schankermann index, nor-
malized) against �rm sales, plotted at the patent level. Each dot represents a single patent.
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Figure 3: Scatterplot of patent quality (logarithm of the Lanjuow and Schankermann index, nor-
malized) against the (logarithm of) annual patent count of the �rm that owns the patent. Each
dot represents a single patent.
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Table 1 

Sample Statistics 

Sample with non-zero patents, citations and R&D 

    

 Mean Median 

Standard 

Deviation Minimum Maximum 

Patents  25,16 4,00 80,53 1,00 2559,00 

Citations 376,34 59,23 1485,57 1,04 57356,70 

Citations, Normalized 21,79 3,70 71,26 0,03 2361,13 

Importance 2801,70 333,03 11587,20 1,05 350817,13 

Importance, Normalized 28,16 4,11 96,60 0,00 3247,25 

Lanjuow & Schankerman (2004) index 120,23 16,81 516,25 0,05 19246,61 

Lanjuow & Schankerman (2004) index, Normalized 22,33 3,69 71,51 0,02 2202,09 

R&D Expenditures 82,71 10,11 360,89 0,00 8026,67 

      

Patents and Quality-Adjusted patents per R&D 
     

PR (Patents per R&D)  1,43 0,52 5,95 0,00 307,06 

CR (Citations per R&D) 1,67 0,19 9,97 0,00 548,06 

CR (Citations per R&D), Normalized 1,31 0,41 6,17 0,00 258,36 

IR (Importance per R&D) 177,81 33,69 1149,88 0,02 68736,29 

IR (Importance per R&D), Normalized 1,60 0,44 8,14 0,00 339,44 

LSR (LS Quality per R&D) 6,01 1,86 29,12 0,00 2133,53 

LSR (LS Quality per R&D), Normalized 1,26 0,42 5,22 0,00 232,86 
 

     

Average Quality 
     

CP (Citations per Patent) 17,07 11,91 18,60 0,45 243,11 

CP (Citations per Patent), Normalized 0,97 0,80 0,81 0,03 13,24 

IP (Importance per Patent) 128,45 63,98 247,38 0,45 8165,47 

IP (Importance per Patent), Normalized 1,22 0,85 1,55 0,00 28,49 

LSP (LS Quality per Patent) 4,80 3,63 4,61 0,05 97,24 

LSP (LS Quality per Patent), Normalized 0,94 0,83 0,62 0,02 13,03 

      

Independent Variables 
     

Sales 2249,04 298,91 8138,40 0,00 155067,43 

Technological Diversity 0,49 0,56 0,36 0,00 0,99 

Age 16,89 17,00 9,89 1,00 38,00 

R&D Intensity 0,18 0,06 0,63 0,00 25,32 

Capital/Labor ratio 84,17 61,59 86,48 0,91 1073,97 

Appropriability 0,07 0,04 0,10 0,00 0,88 

Visibility 38,74 8,00 83,19 0,00 1193,00 
 

     

External  Variables  

(3-digit SIC and Technological Proximity)      

Spillover Pool (in logs) 9,71 9,84 0,83 4,58 11,43 

Technological Opportunity 0,02 0,01 0,08 -0,39 4,50 

Industry Sales (Value of Shipments) 39788,48 26042,00 44270,69 557,20 327907,50 

Industry Growth (Growth of Value of Shipments) 0,08 0,08 0,09 -0,36 0,56 

NOTES: All citations are non-self cites and are corrected for time truncation, except those used in the calculation of the 

Lanjuow & Schankerman quality index (which uses total citations during fixed time windows following patent 

application). Normalization is performed on each quality index before taking logarithms. All dollar values are in millions 

of 1992 dollars, deflated using the GNP deflator.  Employment is in thousands of employees. All logarithms are natural 

logs. Sample size: 11860. Sample period: 1976-1995. 

 



Table 2 

Correlation Matrix  

Variable Name Abbrev. 

log 

(S) 

Tech. 

Div. 

log 

(A) 

log 

(R/C) 

log 

(P/R) 

log 

(C/E) App SP 

Tech. 

Opp. Vis Ind S 

Ind 

Gr 

log (Sales) log (S) 1            

Technological Diversity Tech. Div. 0,58 1           

log (Age) log (A) 0,61 0,38 1          

log (R&D Intensity) log (R/C) -0,46 -0,09 -0,38 1         

log (Patents/R&D) log (P/R) -0,38 0,04 -0,15 -0,26 1        

log (Capital/Employment) log (C/E) 0,39 0,23 0,19 -0,33 -0,18 1       

Appropriability App. 0,13 0,17 0,08 0,03 0,04 0,12 1      

Spillovers SP 0,32 0,44 0,24 0,20 -0,30 0,21 0,06 1     

Technological Opportunity Tech. Opp. -0,12 -0,02 -0,11 0,32 -0,08 0,01 -0,01 0,18 1    

Visibility Vis 0,58 0,55 0,50 0,02 -0,21 0,28 0,17 0,55 0,15 1   

log (Industry Size) Ind S 0,04 0,05 0,00 0,21 -0,17 0,16 0,01 0,36 0,27 0,28 1  

Industry Growth Ind Gr -0,04 -0,01 -0,11 0,06 0,01 -0,12 -0,04 -0,07 -0,01 -0,17 -0,03 1 

              

Dependent Variables              

log (Citations/Patents) log (CP) -0,03 0,08 -0,08 0,19 -0,07 -0,01 -0,05 0,10 0,06 0,06 0,04 0,03 

log (Importance/Patents) log (IP) 0,03 0,17 -0,04 0,19 -0,06 0,02 0,09 0,13 0,06 0,13 0,03 0,03 

log (LS Quality /Patents) log (LSP) 0,00 0,10 -0,05 0,17 -0,03 0,01 0,17 0,09 0,08 0,10 0,06 0,00 

log (Citations/R&D) log (CR) -0,36 0,07 -0,17 -0,14 0,87 -0,17 0,01 -0,22 -0,04 -0,16 -0,14 0,03 

log (Importance/R&D) log (IR) -0,30 0,13 -0,14 -0,10 0,79 -0,14 0,09 -0,17 -0,03 -0,09 -0,12 0,03 

log (LS Quality/R&D) log (LSR) -0,35 0,07 -0,15 -0,17 0,91 -0,17 0,11 -0,24 -0,05 -0,15 -0,14 0,01 

              

 

 



 

 

 

Table 3 

Correlations between innovation indicators 

Dependent Variables 

log 

(PR) 

log 

(CR) 

log 

(IR) 

log 

(LSR) 

log 

(CP) 

log 

(IP) 

log 

(LSP) 

log (Patents/R&D) log (PR) 1       

log (Citations/R&D) log (CR) 0,87 1      

log (Importance/R&D) log (IR) 0,79 0,96 1     

log (LS/R&D) log (LSR) 0,91 0,94 0,91 1    

log (Citations/Patents) log (CP) -0,07 0,42 0,50 0,24 1   

log (Importance/Patents) log (IP) -0,06 0,40 0,57 0,26 0,92 1  

log (LS/Patents ) log (LSP) -0,03 0,33 0,43 0,39 0,73 0,74 1 



 

 

 

 

 

 

Table 4 

 

Patents and Quality-Adjusted Patents per R&D 

Fixed Effects regressions with AR(1) correction 

 

 P a t e n t s Q  u  a  l  i  t  y  –  A  d  j  u  s  t  e  d     P  a  t  e  n  t  s 

 
log (PR): 

Patents per R&D 

log (CR):  

Citations per R&D 
 

Normalized at 75
th

 

percentile 

log (IR):  

Importance per R&D  
 

Normalized at 75
th

 

percentile 

log (LSR):  

Lanjuow & 

Schankermann (2004) 

Quality Index 
 

Normalized at 75
th

 

percentile 

 1 2 3 4 

log (Sales) -0.428
**

 (-27.86) -0.471
**

 (-18.03) -0.476
**

 (-14.78) -0.467
**

 (-19.09) 

Technological Diversity 0.186
**

 (17.93) 0.190
**

 (9.33) 0.221
**

 (8.57) 0.217
**

 (11.72) 

 Squared -0.428
**

 (-16.14) -0.481
**

 (-9.23) -0.532
**

 (-8.08) -0.498
**

 (-10.45) 

 Cubed 0.294
**

 (20.23) 0.331
**

 (11.71) 0.363
**

 (10.15) 0.331
**

 (12.78) 

log (Age) -0.194
**

 (-4.42) -0.273
**

 (-4.22) -0.302
**

 (-3.85) -0.263
**

 (-4.24) 

log (R&D Intensity) -0.826
**

 (-60.05) -0.811
**

 (-32.72) -0.798
**

 (-25.94) -0.811
**

 (-35.42) 

log (Capital/Employment) -0.603
**

 (-25.34) -0.617
**

 (-14.69) -0.594
**

 (-11.44) -0.644
**

 (-16.44) 

Appropriability 0.516
**

 (5.81) 0.784
**

 (3.77) 1.717
**

 (7.58) 2.296
**

 (14.48) 

 Squared -0.727
**

 (-5.06) -3.826
**

 (-8.53) -3.451
**

 (-8.67) -2.958
**

 (-11.47) 

Spillovers 0.217
**

 (4.62) 0.283
**

 (3.57) 0.301
**

 (3.06) 0.345
**

 (4.69) 

Technological Opportunity 0.225
**

 (2.88) 0.295
*
 (1.86) 0.180 (0.89) 0.312

**
 (2.17) 

Visibility 0.0047 (0.28) -0.0336 (-1.17) -0.0585
*
 (-1.65) -0.0638

**
 (-2.37) 

log (Industry Size) 0.0832
**

 (2.01) 0.0478 (0.68) 0.0411 (0.47) 0.0025 (0.04) 

Industry Growth -0.0351 (-0.59) 0.0581 (0.51) 0.0608 (0.42) 0.115 (1.10) 

Year Dummies (1977-1995) YES  YES  YES  YES  

Dummy for Patents in {1,2} YES  YES  YES  YES  

Intercept -0.0799
**

 (-2.27) 0.0564 (0.62) 0.115 (0.94) 0.0445 (0.57) 

R-squared 0.650  0.382  0.311  0.425  

Modified Durbin-Watson 1.077  1.444  1.510  1.394  

LBI (Baltagi & Wu 1999) 1.454  1.902  1.970  1.864  

ρ  0.537  0.364  0.332  0.396  

N 10439  10317  10328  10414  

Notes:  t-statistics are reported in paranthesis. Non-self cites are excluded while constructing CR and IR. All logarithms are natural 

logs.  

 

Significance indicators:  
**

 p < 0.05,  
*
 p < 0.10. 



 

 

 

Table 5 

 

Average Patent Quality 

Fixed Effects regressions with AR(1) correction 

 

 Dependent Variable: Average Patent Quality 

 

log (CP): 

Citations per Patent, 
 

Normalized at 75
th

 

percentile 

log (IP): 

Importance per Patent 

(Trajtenberg et al, 199x) 
 

Normalized at 75
th

 

percentile 

log (LSP): 

Lanjuow & 

Schankermann (2004) 

Quality Index 
 

Normalized at 75
th

 

percentile 

 1 2 3 

log (Sales) 0.0121 (0.55) 0.0332 (1.13) 0.0212 (1.09) 

Technological Diversity 0.0193 (1.26) 0.0490
**

 (2.38) 0.0427
**

 (3.21) 

 Squared -0.0110 (-0.84) -0.0149 (-0.85) -0.0270
**

 (-2.37) 

log (Age) -0.0646 (-1.31) -0.0842 (-1.27) -0.0542 (-1.22) 

log (R&D Intensity) 0.0445
*
 (1.87) 0.0886

**
 (2.77) 0.0526

**
 (2.51) 

log (Patents/R&D) 0.0179 (1.14) 0.0549
**

 (2.61) 0.0292
**

 (2.12) 

log (Capital/Employment) -0.0015 (-0.04) 0.0429 (0.92) -0.0200 (-0.65) 

Appropriability 0.0762 (0.44) 1.136
**

 (5.65) 1.711
**

 (13.58) 

 Squared -2.564
**

 (-6.89) -2.647
**

 (-7.49) -2.142
**

 (-10.44) 

Spillovers 0.0124 (0.20) 0.00345 (0.04) 0.0638 (1.14) 

Technological Opportunity -0.0800 (-0.60) -0.225 (-1.25) 0.0081 (0.07) 

Visibility -0.0556
**

 (-2.46) -0.0823
**

 (-2.69) -0.0767
**

 (-3.81) 

log (Industry Size) (3-digit SIC) -0.0034 (-0.06) -0.0016 (-0.02) -0.0414 (-0.84) 

Industry Growth (3-digit SIC) 0.0804 (0.85) 0.0731 (0.58) 0.121 (1.47) 

Year Dummies (1977-1995) YES  YES  YES  

Dummy for Patents in {1,2} YES  YES  YES  

Intercept 0.0904 (1.02) 0.145 (1.22) 0.103 (1.42) 

R-squared 0.0314  0.0256  0.0380  

Modified Durbin-Watson 1.602  1.601  1.566  

LBI (Baltagi & Wu 1999) 2.101  2.087  2.094  

ρ  0.295  0.295  0.321  

N 10317  10328  10414  

Notes:  t-statistics are reported in paranthesis. Non-self cites are excluded while constructing CP and IP. All logarithms 

are natural logs.  

Significance:  
**

 p < 0.05,  
*
 p < 0.10. 
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