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We introduce a network formation model based on the idea that individuals engage in 
production (or decide to participate in an action) depending on the similar actions of 
the people they observe in the society. We differentiate from the classical models of 
participation by letting individuals to choose, non-cooperatively, which agents to 
observe. Observing behavior of others is a costly activity but provides benefits in 
terms of reduction in cost of production for the observing agent, which we take it as 
learning. 
In this non-cooperative setting we provide complete characterization of both Nash 
stable and socially efficient network configurations. We show that every society can 
admit a stable network. Moreover, typically there will be multiple stable 
configurations that will be available for a society. While all stable networks will not 
be efficient, we show that every efficient network will be stable. 
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1 Introduction

This paper aims to provide a perspective for understanding how actions of agents
in groups are influenced through interactions with other members of a society. We
acknowledge the rich literature both in game theory, and social networks (participation
games, Networks) that focuses similar topics.

Here we pick a very specific interaction. We consider situations where one’s decision
to engage in an action, such as a social movement, adapting a fashion or religion,
a production activity, or taking a portfolio decision depends on how people around
one’s social circle behave. Observing people taking similar actions somehow reduces
one’s cost of engaging in the same action. In the context of a production decision,
this reduction in cost may be due to productivity gains as a result of learning a
technique. For an artist, observing works of others should be inspiring, leading higher
chances of better output, (from this perspective it is not surprising that we see artists
generally reside in close neighborhoods where such observations are easier.) In the
context of adapting a fashion, religion participating a social movement, observing
people making similar choices helps you to feel that you are not a complete outlier.
Similarly, for a researcher, subscribing journals to follow works of others is obviously
productivity enhancing and is necessary for creation of original work. We shall refer
this effect as learning (through observing). There is also a vast literature on learning.
([1],[2],[5],[3],[6],[4])

A common and critical property of above examples is that one is free to choose

whom to observe. It is generally the case that observing all members of a society in
not feasible, otherwise prohibitively costly. So one must choose a subset of agents to
observe from overall society. This differentiates the situations we focus from situations
where you have a fixed neighborhood structure whose overall behavior influences you
(see, for example [1]). Through this differentiation we can also provide insights not only
the actions of agents but also about the networks that will form from such observing
behavior of agents in a society. This will allow us to identify influencing groups of
agents in a society, i.e. hubs.

In this paper we look at the structural properties of societies with above character-
istics. More specifically following questions are of interest and shall be addressed. (1)
Which configurations of engagement and communication structures emerge in societies
with agents that are motivated by self interest? (2) How societies that are organized
by self interest compare with the socially efficient configurations?

Inspired by the situations described, we develop a model to provide formal frame-
work to answer above questions. We consider societies in which members take two
strategic decisions simultaneously; whether to engage in an action or not and the sub-
set of agents they will observe in the society. The cost benefit trade off of these two
actions are as follows. Engaging in an action provides a fixed benefit to the agent but
is also costly. This cost, which we shall refer as engagement cost, can be reduced if
one is able to observe other agents that are also engaged in the action. That is, the
more people you observe that are also engaged in an action, the more you learn, and is
less costly for you to engage. However, observing others is also costly to the agent. So
although engaging in an action provides benefits, the final payoff depends on cost of
engagement and total cost of observing others. It is possible to have situations where
an agent wishes to engage in an action, but cannot, since, in case she does, she will not
be able find sufficient number of people that she can observe to reduce engagement
cost sufficiently. But once engagement decision is given agent increases its observation
set as long as the marginal reduction in cost of engagement is higher than the cost of
observing the last included agent.

The observing behavior of agents can be represented with a network where nodes
correspond to agents and an edge from node i to j means, i observes j. Since i’s
observation of j does not imply that j observes i, the network is directed.

In this setting we first focus on the stable configurations of the non-cooperative
simultaneous move normal form game. We provide a complete characterization of stable
network configurations a society can admit under different cost structures. As stability
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notion we employ the Nash equilibrium. So a society is considered stable if for each
agent the proposed strategy is her best response to the state of the rest of the society.
Then we provide a characterization of societies that are efficient, i.e. that maximize
that total payoff. We then compare the two characterizations.

We interprete our formal results as follows. Since our characterizations cover all
possibilities, it follows that there exists a stable state for every society to admit. The
configuration of this state, expectedly, depends on the cost structure.

When cost of engagement is high, there are two possibilities. First, there is no pos-
sibility of engagement since the costs are prohibitively high, and the society naturally
produces nothing. Second, engagement is feasible but inducing an agent to engage in
an action requires high number other engaging agents to be observed. Hence existence
of engaging agents in such societies requires coordination among many agents. Oth-
erwise it is easy for a society to get stuck in a state where no agent acts, unless, for
some reason the collective action is somehow stimulated.

On the other extreme, when the engagement cost is low, learning is very rapid
through observing just a few agents, or cost of observing others is very low, then
every agent engages and observe payoff maximizing number of agents in the society.
As agents are symmetric, number of people each agent observes must be almost the
same. When production cost is low but cost of observing others is high, it is possible
that everybody engages but observe no one.

In the intermediate cases, we observe societies with partial engagement. Yet this
is a very rare case as the setting requires symmetric payoff between both agents that
produce and agents that don’t.

The paper is organized as follows. Section 2 introduces the formal model. We pro-
vide the results on stability in section 3. This is followed by efficiency characterization
in section 4. In section 5 we provide an example to illustrate results of the paper.
Section 6 concludes.

2 A Model of Learning by Observing

We denote by N = {1, . . . , n} the set of agents in a society. Each agent i ∈ N decides
on two issues: whether to engage in production of non-rival good (yi = 1) or not
(yi = 0) and the set of agents, Si, that she wishes to observe. A strategy of agent i is,
therefore, a pair (Si, yi) where Si ⊂ N \{i} and yi ∈ {0, 1}. Define S = {S1, . . . , Sn} as
a network and y = {y1, . . . , yn} as a production configuration. An n-tuple of strategies
(S, y) = {(Si, yi)}i∈N is called a network configuration.

Observing each agent in Si, costs γ > 0 for agent i. The benefit of observing other
producers is due to reduction in cost of production. Let β[] be the cost of engaging in
production. If no agent is observed then this cost is at its maximum, β̄ = β[0] > 0.
With each observed producer, this cost decreases, yet, with a decreasing rate. Hence
we require β�[] < 0,β��[] > 0. The lower bound of the cost isβ = limx→∞β[x] ≥ 0. The
payoff function of agent i in network configuration (S, y) is given by

πi[S, y] = yi − β
� �

j∈Si

yj
�
yi − γ|Si|

In what follows we will be focusing on the properties of the pure strategy Nash equi-
librium of the normal form game (N, {Σi}i∈N , {πi}i∈N ) where Σi is i’s strategy space
Σi = {(Si, yi)|Si ⊂ N \ {i}, yi ∈ {0, 1}}.

3 Stable Network Configurations

Let T be the set of number of agents that are necessary to provide a non-negative
payoff from engaging in production. Formally, T ⊂ {0, 1, . . . , n − 1} such that ∀i ∈
T, 1− β[i]− γi ≥ 0. We shall refer to T as engagement inducement set. Let t∗ ⊂ T be
the set of number of agents that one needs to observe to maximize her payoff in the
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case that she engages in production, i.e. t∗ = {i ∈ T |∀j �= i,β[j] + γj ≥ β[i] + γi}.
Let t̃ be the set of minimum number of producing agents that is required to induce
an agent to produce. Formally, let i ∈ T be such that ∀j ∈ T \ {i}, j > i. Then define
t̃ = {i, i+ 1} if i+ 1 ∈ T and 1− β[i]− γi = 1− β[i+ 1]− γ(i+ 1) otherwise t̃ = {i}.

The strict concavity of the cost function implies that if 1 − β[i] − γi = 1 − β[i +
1] − γ(i + 1), we cannot have 1 + β[i + 2] − γ(i + 2) = 1 − β[i + 1] − γ(i + 1), since
β[i] − β[i + 1] > β[i + 1] − β[i + 2]. Therefore the sets t̃ and t∗ can have at most two
members.1

We start with characterization of societies depending on production configuration.
In societies where no agent engages in production, the unique network structure is
the empty network, since cost benefits cannot be realized (both because agents do not
produce and there are no producing agents to observe). Our first result states that
when production inducement set is empty, the unique stable network configuration is
the empty network with no production.

Proposition 1. If T = ∅, then the unique Nash network configuration (S, y) is the

empty network with no production, i.e. ∀i ∈ N,Si = ∅, yi = 0.

Proof of Proposition 1. Suppose T = ∅. If (S, y) is a configuration with no production
then no agent forms any link (as links are costly), so it must an empty network. If
∃i ∈ N with yi = 1, then it must be that 1− β[|Si|]− γ|Si| ≥ 0 contradicting with the
assumption T = ∅.

When production inducement set is non empty, it is always possible to construct
a society in which all agents engage in production. Unlike the case of no production,
production configuration itself, however, does not necessarily imply a unique network
structure. While it is possible to have networks where agents observe each other, i.e.
a complete network, there are also other possibilities. Suppose, for example, T = {0},
in which case, a society where all agents produce but none observe (empty network) is
stable. The following result provides the necessary and sufficient condition for existence
of an all producing society.

Proposition 2. There always exists a Nash network configuration where ∀i ∈ N, yi =
1 if and only if T �= ∅.

Proof of Proposition 2. Suppose T �= ∅. Define (S, y) such that ∀i ∈ N, yi = 1, |Si| ∈
t∗. By definition of t∗, observing |Si| agents maximizes the payoff of typical agent i
while inducing him to produce. As every agent produces, there exists t∗ agent that can
be observed by each agent. Therefore proposed strategy is feasible.

Suppose (S, y) is a Nash network configuration where ∀i ∈ N, yi = 1 but T = ∅.
Then it must be that any i ∈ N, 1 − β[|Si|] − γ|Si| < 0 as otherwise it must be that
|Si| ∈ T . But then, no production and no observation S�

i = ∅, y�i = 0 strictly dominates
(Si, yi) contradicting that (S, y) is Nash.

A non empty production inducement set does not guarantee that agent will always
engage in production. When at least one agent must be observed to induce another
to engage in production or when agents are indifferent between not producing or
producing without observing any other agent it is possible that a society can be stuck
in a stable, typically inefficient, state where no agent produces. This requirement, which
is stated in our next result, simplifies to the condition that the cost of production, with
no agent observed, is at least equal to the benefit from production.

Proposition 3. Suppose T �= ∅. Then a Nash network configuration (S, y) with no

production exists if and only if β[0] ≥ 1.

Proof of Proposition 3. Suppose (S, y) is Nash network configuration satisfying ∀i ∈
N, yi = 0 but β[0] < 1. Then for i ∈ N the strategy y�i = 1, S�

i = ∅ provides the payoff

1It is in fact easy to check that if |t̃| = 2 due to strict convexity of the cost function it must be
that t∗ = t̃.
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1 − β[0] > 0 which is strictly higher than payoff from no production (−|Si|γ ≤ 0)
contradicting with the assumption that (S, y) is a Nash network configuration.

Suppose (S, y) satisfies β[0] ≥ 1 but (S, y) where ∀i ∈ N, yi = 0 is not a Nash
network configuration. Since no one else produces and links are costly, there is no
benefit from observing, so the best response for typical agent i is Si = ∅. If i produces
its payoff is 1−β[0] < 0 which is strictly less than the payoff of the strategy yi = 0.

We now have a clear idea about the conditions under which we shall expect a society
to engage in production completely or produce nothing at all. What naturally follows is
under what conditions we shall expect societies with partial production, i.e. ∃i, j ∈ N
such that yi = 0, yj = 1. It turn outs that such situations require both producers
and non producers to have identical payoffs. The reasoning behind this observation
is the fact that both non producer and a producer can imitate each other’s strategy,
therefore shall not differentiate between the two. This in turn implies that producers
gain no strict benefits from production. The condition for existence of such societies
reduces to the condition that there shall be no strict benefits even when there are
enough producers to observe to maximize the payoff. Our next result characterizes
this possibility.

Proposition 4. Suppose T �= ∅. Then a Nash network configuration (S, y) with partial

production exists if and only if ∀j ∈ t∗, 1− β[j]− γj = 0.

Proof of Proposition 4. Let (S, y) be a Nash network configuration with partial pro-
duction. Consider agents i and j with yi = 1, yj = 0. As yj = 0 we can assume that
j /∈ Si and Sj = ∅. As both i and j can imitate each other’s strategy, their payoffs must
be same, i.e. 1−β[|Si|]−γ(|Si|) = 0. As (yi, Si) is i’s best response with 0 payoff, it must
be that either i. |Si| ∈ t∗ or ii. the marginal payoff from observing one more agent is still
positive but such an agent does not exist, i.e. #{l ∈ N |yl = 1} = |Si|+1.Case ii. is not
possible since agent j facing one more producer than agent i can set S�

j = Si∪{i}, y�i = 1

and enjoy a strictly positive payoff. So it must be that |Si| ∈ t∗, which yields t̃ = t∗.
Suppose ∀j ∈ t∗, 1−β[j]−γj = 0 which implies t̃ = t∗. Define a partial production

network as follows. Let P = {1, . . . , l + 1} for l ∈ t̃. Set ∀i ∈ P, yi = 1, Si = P \ {i}
and ∀j ∈ N \ P, yj = 0, Sj = ∅. It immediately follows from definition of set t̃ that
above strategies for each type of agent is a best response, hence the network is a Nash
configuration.

We shall now focus on the network structures that can emerge from the production
configuration of a society. Our first result states that existence of complete network
requires not only that each agent must produce but also that observing all other agents
must be payoff maximizing, that is, (n− 1) ∈ t∗.

Proposition 5. A complete network is Nash if and only if ∀i ∈ N, yi = 1 and (n−1) ∈
t∗.

Proof of Proposition 5. Recall that a complete network is defined as ∀i ∈ N,Si =
N \ {i}, so |Si| = n− 1.

If (S, y) is a Nash complete network, then γ > 0 implies that each link must be
with a producer, so ∀i ∈ N, yi = 1 and by definition of t∗, (n− 1) ∈ t∗.

Similarly, if ∀i ∈ N, yi = 1, |Si| = n − 1 and (n − 1) ∈ t∗, for each agent i ∈ N ,
strategy (Si, yi) is best response by definition of t∗.

We already noted that while a non producing society must admit an empty network,
it is still possible that a society partially or completely engages in production may
admit an empty network. This requires either that it is optimal for agents not to
observe even in the case of production, which can be due to high observation costs, or
production costs must be prohibitively high to prevent agents from production. The
following result states above observation formally.

Proposition 6. There exists a Nash empty network (S, y) if and only if either 0 ∈ t∗

or β[0] ≥ 1.
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Proof of Proposition 6. Let (S, y) be an empty Nash network but 0 /∈ t∗ and β[0] < 1.
As β[0] < 1, the strategy for typical agent i, yi = 1, Si = ∅ strictly dominates no
production, thus ∀i ∈ N, yi = 1. As 0 ∈ T we have t∗ �= ∅ and since ∀i ∈ N, yi = 1 , the
strategy yi = 1, |Si| ∈ t∗ is a feasible best response strategy which will strictly dominate
yi = 1, Si = ∅ (since 0 /∈ t∗ by assumption) contradicting with the assumption that
(S, y) is an empty Nash network.

Suppose 0 ∈ t∗, then for any i ∈ N , yi = 1, Si = ∅ is a feasible best response, so
the empty network where ∀i ∈ N, yi = 0 is Nash. (Note that if β[0] = 1 empty network
configurations with partial and no production are also Nash).

Suppose β[0] ≥ 1, then for any i ∈ N , yi = 0, Si = ∅ is a feasible best response, so
the empty network where ∀i ∈ N, yi = 0 is Nash.

We shall now discuss, informally, when other well known network structures can
emerge in our setting. Existence of links implies that there is complete or partial
production in the society. In case of partial production, which we characterized in
Proposition 4, links must be between producing agents. In the case of complete pro-
duction, which we characterized in Proposition 2, it must be that optimal number of
agents an agent wishes to observe must be between 0 (in which case empty network
forms) and n− 1 (in which case complete network forms).

Consider the wheel network where each agent only observes a single agent forming
a ring. This requires every agent to be producer, weakly benefiting from observing a
single agent and no more. This implies necessary condition for existence of a wheel
network is 1 ∈ t∗.2

Consider the star network where (n− 1) agents observe a single central agent, and
the central agent observes the (n − 1) other agents. Again this implies a completely
producing society. As every agent produces, any link strategy is feasible. If a single
link and (n− 1) links are chosen best responses it must be that t∗ = {1, n− 1}. This,
however, due to convexity of the cost function, is only possible if 1 = n−1 or n−1 = 2,
that is, either n = 2 or n = 3.3

We note that none of these structures can be supported as strict Nash network
configurations.4

4 Efficient Network Configurations

We are interested in the network configurations that are efficient. As efficiency measure
we consider the sum of payoffs of all agents in a society.5

W =
�

j∈N

πj [S, y]

Our first result in this section characterizes the efficient network configurations. When
production inducement set is empty, a society where no agent produces and no agent
observes others is the unique efficient network configuration.

If there exists a number of producers that will provide strict benefits from pro-
duction, efficiency requires all society to produce and each agent to observe optimal
number of agents. When such strict benefits do not exist, but inducement set is not
empty, efficient( societies consists of either (i) with no production, forming an empty
network or (ii) with partial or complete production in which each producer i observes
|Si| ∈ T = t∗ agents.

Following proposition states this result.

2There are, in fact, three possibilities t∗ = {1}, {0, 1} or t∗ = {1, 2}. It is also straightforward to
show that this condition is also sufficient for existence of wheel networks.

3We can extend our result to other possible variations of a star network. For example if we define
a star network as a single agent observed by all other members of a society only, then obviously the
condition will be t∗ = {0, 1}. If we consider star networks where a single agent observes all others in
a society, then the condition will be t∗ = {0, n− 1}.

4A strict Nash equilibrium is a Nash equilibrium where for each player the strategy is the unique
best response.

5EEE Mention other measures that are possible and why we choose this. EEE
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Proposition 7. (i) If T = ∅, empty network with no production is the unique efficient

network configuration. (ii) If ∃i ∈ T such that 1− β[i]− iγ > 0, then (S, y) satisfying
∀i ∈ N, yi = 1, |Si| ∈ t∗ is the unique efficient network configuration. (iii) If ∀i ∈
T, 1 − β[i] − iγ = 0, then, both the empty network with no production , and any

network configuration where each producer connects i ∈ T other producers is efficient.

Proof of Proposition 7 . (i) As T = ∅, the configuration Si = ∅, yi = 0 is the unique
payoff maximizing strategy for all i ∈ N . Therefore, the payoff of each agent in the
empty network with no production strictly dominates corresponding agent’s payoff in
other configurations.

(ii) By definition ∀i ∈ N, yi = 1, |Si| ∈ t∗ provides the unique highest payoff
provided that t∗ �= ∅ and there are at least |Si| producers other than i. As ∀i ∈ N, yi = 1
and T �= ∅ both conditions are satisfied.

(iii) Let (S, y) be an efficient network. If yi = 1 for some i ∈ N , and there are at
least k ∈ T producers, by definition linking i with k ∈ T = t∗ other producers maxi-
mizes i’s payoff, setting it πi[S, y] = 0, thus increases total welfare. Otherwise, linking
with k� /∈ T producers, by definition will provide strictly less payoff, i.e. πi[S, y] < 0,
and the strategy S�

i = ∅, y�i = 0 providing payoff 0 strictly dominates. The result
directly follows from these observations.

Proposition 8. Every efficient network configuration is stable.

Proof. When T = ∅, by Proposition 7 empty network with no production is the unique
efficient network as well as due to Proposition 1 is also stable. When there exist i ∈ T
such that 1 − β[i] − iγ > 0, by Proposition 7 network configuration (S, y) where
∀i ∈ N, yi = 1, |Si| ∈ t∗ is efficient. By Proposition 2 given T �= ∅ there exists
a Nash network configuration where ∀i ∈ N, yi = 1. As by definition linking with
|Si| ∈ t∗ agents is best response the efficient network (S, y) is also stable. When
∀i ∈ T, 1−β[i]− iγ = 0, by Proposition 1 both the empty network with no production,
and any network configuration where each producer connects i ∈ T other producers
is efficient. Note that the condition implies T = t̃ = t∗. Then by Proposition 4 there
always exists a partial production network where each agent connects i ∈ t∗ = T
agents. Note that the condition ∀i ∈ T, 1 − β[i] − iγ = 0 implies β[0] ≥ 1, which due
to Proposition 6, yields that empty network configuration with no production is also
stable.

But it is clear that not every Nash network is efficient. For this consider the fol-
lowing society.

5 An Example

As an illustrative example we assume a cost function of the form β[x] = β̄e−αx, where
α > 0 which yields β = 0 and β[0] = β̄.

Consider the complete network. Proposition 5 states that (n − 1) ∈ t∗ is neces-
sary and sufficient condition for existence of complete network. We first construct the
condition (n− 1) ∈ T

1− β̄e−(n−1) − γ(n− 1) ≥ 0 ⇒ β ≤ 1− γ(n− 1)

e−α(n−1)

To guarantee that (n− 1) also belongs to set t∗, due to the strict convexity of the cost
function, it is sufficient to set the parameters so that connecting with (n − 2) agent
provides (weakly) less payoff then connecting (n− 1) agents

1− β̄e−α(n−1) − γ(n− 1) ≥ 1− β̄e−α(n−2) − γ(n− 2)

which yields the condition

β̄ ≥ γ

e−α(n−2) − e−α(n−1)

6



Thus, the interval for stable complete network is

1− γ(n− 1)

e−α(n−1)
≥ β̄ ≥ γ

e−α(n−2) − e−α(n−1)

which is the triangle indicated with the doted lines in figure 1.
Now consider the empty network which, due to Proposition 6, requires (i) β̄ ≥ 1 or

(ii) 0 ∈ t∗. The interval for condition (ii) can calculated by checking first that 0 ∈ T
and then 0 ∈ t∗ which show below

1− β̄ ≥ 0 ⇒ β̄ ≤ 1

1− β̄ ≥ 1− β̄e−1 − γ ⇒ β̄ ≤ γ

1− 1/e

When (i) is satisfied with strict inequality, no agent produces unless they observe
some other producer. So stable empty network configurations cannot involve any pro-
duction. When (ii) is satisfied with strict inequalities, then stable empty network con-
figurations involve full production. Note that both (i) and (ii) can simultaneously be
satisfied only when β̄ = 1 and β̄ ≤ γ

1−1/e , in which case we can have stable empty
network configurations than can have partial production.

Figure 1 shows the stability intervals for complete and empty networks with dif-
ferent production configurations.

complete network,
empty network with no production

empty network with no production

empty network with complete production

complete network

Figure 1: Stable Empty and Complete Networks, n = 10,α = 0.1.

Figure 2 shows the intervals for stable network configurations according to their
production configurations. When the production inducement set is empty, the unique
stable network configuration empty network with no production (Proposition 1). When
this set is non empty different stable configurations are possible.

6 Conclusion

We provide characterization of both the production decisions of agents in a society
and the network implied by their observation behavior.
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T = 

T = 

T = 

no productionno production

complete production

complete production partial production

Figure 2: Stable Networks, n = 10,α = 0.1.

We illustrate our results with an example. Let us summarize our results by using the
example given in section 5. When initial cost of production is sufficiently low (β̄ < 1)
every agent strictly prefers to produce even without observing others, therefore all
stable configurations must involve full production. Benefits from observing others will
depend on the link cost γ. When γ is sufficiently low, every agent observes others,
further reducing their production costs. When γ is high, agents stop observing others,
yet still continue production albeit with higher production cost β̄. In the intermediate
cost range for γ, shown as the empty triangle in figure 1, all agents engage in production
and strictly prefer to observe others, yet observe agents in the range (n − 1) and 0.
In this region network structures other than empty and complete, e.g. wheel network,
are stable with complete production.

When initial cost of production is high (β̄ < 1) production requires coordination,
that is, no agent will engage in production unless there exists other producers in the
society. When the observing cost γ is prohibitively high, that is, cost benefits from
observing others cannot justify the cost of observing, no one observes and no one
produces. If costs are sufficiently low, every body is willing to observe others and
produce, thus forming the complete network configuration.

Note that these are not necessarily the unique network configurations. Consider the
tip of the triangle indicating the stable interval for the complete network. Why does
the complete network becomes unstable if β̄ decreases? In this range there are other
stable network configurations that can coexists with empty network configuration. The
reason that complete network becomes unstable is that the optimal number of agents
to observe decreases, since production cost is already lower, thus agents will prefer to
observe less than (n − 1) agents, but will still produce as long as there are sufficient
producers to observe.

The model we provide here forms the basis for a rich set of extensions. One possi-
bility of extension is to consider asymmetries in payoffs, due to say cost heterogeneity.
In such a setting we expect agents with cost benefits to have production inducement
sets that to be super set of inducement sets of agents with cost disadvantage.

A shortcoming of our model is that since agents are symmetric, one does not
differentiate between observing any two agents as long as both engage in production.
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So network structures are not too informative. What naturally follows is introducing
heterogenity to the society.
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