Exercise VI
Two-Period Models—Partial Equilibrium

1. Suppose that Daniel has income of \(y_1 \) when he is young and \(y_2 \) when he is old. Initially, the real interest rate is \(r_1 \). The utility function of Daniel is

\[
U = \frac{c_1^{1-\theta}}{1-\theta} + \beta \frac{c_2^{1-\theta}}{1-\theta},
\]

where \(\beta \) is the discount factor.

(i) Find the optimal values of \(c_1 \) and \(c_2 \).

(ii) Show that \(\frac{\partial c_1^*}{\partial y_1} > 0 \), \(\frac{\partial c_2^*}{\partial y_1} > 0 \), and \(\frac{\partial s^*}{\partial y_1} > 0 \).

(iii) Show that \(\frac{\partial c_1^*}{\partial y_2} > 0 \), \(\frac{\partial c_2^*}{\partial y_2} > 0 \), and \(\frac{\partial s^*}{\partial y_2} < 0 \).

(iv) Show that \(\frac{\partial c_1^*}{\partial r} = \text{?} \), \(\frac{\partial c_2^*}{\partial r} > 0 \), and \(\frac{\partial s^*}{\partial r} = \text{?} \) if the consumer is a lender in the current period. (Difficult)

(v) Show that \(\frac{\partial c_1^*}{\partial r} < 0 \), \(\frac{\partial c_2^*}{\partial r} = \text{?} \), and \(\frac{\partial s^*}{\partial r} > 0 \) if the consumer is a borrower in the current period. (Difficult)

2. Suppose that Daniel has income of \(y_1 = 400 \) when he is young and \(y_2 = 100 \) when he is old. Initially, the real interest rate is \(r_1 = 25\% \). The utility function of Daniel is

\[
U = \frac{c_1^{1-\theta}}{1-\theta} + \beta \frac{c_2^{1-\theta}}{1-\theta},
\]

where \(\beta = 0.8 \) is the discount factor.

(i) Find the optimal values of \(c_1 \), \(c_2 \) and \(U(\cdot)U \) for \(\theta = 0.5 \).

(ii) Suppose now that \(y_1 \) has been raised to 500. Find the optimal values of \(c_1 \) and \(c_2 \).

(iii) Suppose now that \(y_2 \) has been raised to 150. Find the optimal values of \(c_1 \) and \(c_2 \).

(iv) Suppose now that \(r \) has been raised to 30\%. Find the optimal values of \(c_1 \) and \(c_2 \). Try to disentangle substitution effect from income effect, using the Hicksian compensation.
3. Use the following utility function and budget constraint to answer the given questions.

\[U = \ln(c_1) + \beta \ln(c_2) \quad \text{s.t.} \quad c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r} \]

where \(c_1 \) is this period’s consumption and \(c_2 \) is next period’s consumption, \(y_1 \) is current income and \(y_2 \) is net period’s income, and \(r \) is the real interest rate.

(i) Determine the MRS (marginal rate of substitution) for this consumer.

(ii) Find the optimal consumption bundle \((c_1, c_2)\) as a function of \(y_1, y_2,\) and \(r\) for \(\beta = 1\). Interpret what \(\beta = 1\) does mean. Sketch a graph of this solution.

(iii) Let \(y_1 = y_2 = 105\) and \(r = .05\). Use these values to compute current consumption and determine if this consumer is a saver or borrower given this endowment. Show the endowment point on your graph.

(iv) For the same income endowment, determine what happens to \(c_1\) if \(r\) increases to \(r = 0.1\). Which effect dominates the current consumption decision: income or substitution effect?

4. Consider the following aggregate consumption function and government budget constraint:

\[C_1 = \frac{1}{2} \left[Y_1 - T_1 + \frac{Y_2 - T_2}{1+r} \right] \quad \text{and} \quad G_1 + \frac{G_2}{1+r} = T_1 + \frac{T_2}{1+r} \]

(i) Show that Ricardian Equivalence holds when consumers recognize that future taxes must cover the current deficit and future spending.

(ii) Since current consumption, \(C_1\), only changes if \(G_1\) or \(G_2\) changes, what happens to private savings \((Y-T-C)\) if current taxes are reduced, with no change in \(G\)? (You may assume \(Y\) is unchanged.)

(iii) Use the consumption function solved in terms of \(G_1\) and \(G_2\) to answer these questions numerically. Let \(Y_1 = Y_2 = 125\) and \(r = 0.05\).

- If \(G_1 = G_2 = 20\), what is current consumption, \(C_1\)?
- What happens to \(C_1\) if \(G_1\) decreases to 10 with no change in \(G_2\)?
- What happens to \(C_1\) if \(G_1\) decreases to 10 and \(G_2\) decreases to 9.5?
- Use your answers above to infer the MPC (marginal propensity to consume) for a temporary increase in income and the MPC for a permanent increase in income. (Hint: refer your textbook to answer this question)