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Abstract

This paper estimates the determinants of the size of oil tanker spills without dis-

tributional assumptions on the error terms. We employ semiparametric estimation

techniques to estimate the parameters of a sample selection model and compare them

to the estimates from a sample selection model with normal errors. We �nd that al-

though parameter estimates are sensitive to the assumption of normality and to the

semiparametric technique used. Major �ndings that are qualitatively supported by all

methods are: groundings and collisions result in larger spills if there is a spill, but the

likelihood that there will be a spill due to a grounding or collision is very low; tanker

size has only a marginal e�ect on the probability of a spill and a dubious e�ect on

spill size; US 
ag tankers and new tankers have a lower probability of causing spills,

compared to foreign 
ag and old tankers, respectively.
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1 Introduction

The sample selection model is usually estimated under the assumption that the disturbance

terms are normally distributed. Since it is not always possible to work out the joint distri-

bution of the disturbance terms when they are not jointly normally distributed, it is hard

to test the sensitivity of the parameter estimates to distributional assumptions. However,

bias due to misspeci�cation of the distribution of the error terms can be substantial1. In

this paper, we estimate a sample selection model for accidental oil spills by tankers without

distributional assumptions on the error terms. We compare these parameter estimates and

predictions with those generated under the normality assumption. We �nd that parameter

estimates and predictions vary.

This paper is organized as follows. In the next section, we present some of the relevant work

in the literature. In section three, we describe the model and the semiparametric estimation

techniques we use, followed by a discussion of the results. A summary of major �ndings

concludes the paper.

2 Literature Review

There is mixed evidence in the literature regarding the sensitivity of parameter estimates

to distributional assumptions in the context of selection models. Ichimura (Ichimura 1987)

provides Monte-Carlo evidence that bias due to misspeci�cation of distribution can be sub-

stantial. Coslett's (Cosslett 1991) results also give evidence to this e�ect.

1For a discussion, see (Ichimura 1987) and (Cosslett 1991)
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Mroz (Mroz 1987), however, tests the parameter estimates from his model of female labor

supply with di�erent distributional assumptions and �nds them to be insensitive to distribu-

tional assumptions. Newey et al. (Newey, Powell, & Walker 1990) estimate the female labor

supply model of Mroz (Mroz 1987) using semiparametric techniques and also �nd estimates

that are close to Mroz's estimates.

In this paper, we estimate a sample selection model using the semiparametric estimation

technique developed by Powell (Powell 1987). Powell proposes a two-step procedure analo-

gous to Heckman's procedure (Heckman 1979) for the standard sample selection model with

normal disturbances.
p
n-consistent and asymptotically normal, estimates are obtained if

p
n-consistent and asymptotically normal estimates for the sample selection e�ect are avail-

able. Klein and Spady (Klein & Spady 1993) and Ichimura (Ichimura 1987) propose
p
n-

consistent and asymptotically normal estimates for the parameters of the sample selection

e�ect. In the next section, we present the sample selection model and describe the estimation

techniques we use.

3 Estimation

In this section we describe how a selection model for tanker oil spills is estimated with

weak distributional assumptions for the error terms. The model is a selection model where

the error distributions depend on a single index.
p
n-consistent and asymptotically normal

estimates are obtained. This permits inference on the parameters using the central limit

theorem and ensures that the estimation approach is not in�nitely ine�cient relative to
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parametric methods when the latter are correctly speci�ed (Powell 1987).

The selection equation is:

z�i = w0
i
 + vi (1)

zi = 1 ifz�i > 0; (2)

zi = 0 otherwise:

The outcome equation is:

yi = w0
i� + �i; observed only if zi = 1; (3)

where yi is the natural logarithm of spill size in gallons, 
 and � are vectors of coe�cients,

wi is a vector of independent variables. vi and �i are distributed independently of wi. Since

spill size is observed only when zi = 1 and since zi = 1 when vi > �w0
i
 for zi = 1, the

outcome equation can be rewritten as:

yi = w0
i� + �(w0

i
) + ui (4)

where,

�(w0
i
) = E[�ijvi > �w0

i
] (5)

so that E[uijwi] = 0. The additional term in ( 4) is referred to as the \correction" term. It

corrects equation ( 3) by including the possible correlation between vi and �i since E(�i) need
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not equal E(�ijvi). Note that neither of the equations can contain an identi�able constant

term because we do not impose any restrictions on the means of the error terms. To estimate

the model, we follow a two-step procedure analogous to the two-step procedure of Heckman

(Heckman 1979) for estimating the sample selection model with normal errors. Estimation

of 
 is based only on equation 1. We employ two di�erent estimators for 
 proposed by

Ichimura (Ichimura 1987) and Klein and Spady (Klein & Spady 1993). We estimate the

parameters of the outcome equation as suggested by Powell (Powell 1987). In the following

sections we describe the estimators used.

3.1 The Klein and Spady Estimator

In this section we describe the estimator developed by Klein and Spady (Klein & Spady

1993). Let P (zi = 1jw0
i
) denote the probability of the event zi = 1 conditioned on w0

i
.

The probability function is unknown but it can be estimated nonparametrically by kernel

methods. Let P̂ (zi = 1jw0
i
) denote this estimate. The Klein and Spady estimator, referred

to as the K&S estimator hereafter, maximizes the following quasi-likelihood function:

Q(
) =
X
i

Qi(
) =
X
i

(�̂i=2)(ziln[P̂ (zi = 1jw0
i
)

2] + (1� zi)ln[(1� P̂ (zi = 1jw0
i
))

2]): (6)

The estimated probability function, P̂ (zi = 1jw0
i
), is:

P̂ (zi = 1jw0
i
) =

ĝ(zi = 1; w0
i
) + �̂(zi = 1; w0

i
)

ĝ(w0
i
) + �̂(w0

i
)
(7)
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where ĝ(zi = 1; w0
i
) is a kernel estimate of the joint density as in (8) and ĝ(w0

i
) is a kernel

estimate of the marginal density as in (9).

ĝ(zi = 1; w0
i
) =

X
j

I(zj = 1)

N � 1

1

h
K

"
(wi � wj)

0


h

#
(8)

ĝ(w0
i
) =

X
j

1

N � 1

1

h
K[

(wi � wj)


h
] (9)

where I(:) is an indicator function, K[:] is the kernel function and h is the bandwidth.

When estimated densities are too small, they pose problems for convergence. Klein and

Spady use two types of trimming to avoid these problems. The estimated densities are

trimmed through �̂:

�̂(x) = ha[eq=(1 + eq)] (10)

(11)

where q = [(hb� ĝ(x)=hc], 0 < b < c and 1 > a > 2b+2c > 0. �̂i trim the likelihood function

by downweighting observations for which the estimated densities are too small.

�̂i � �̂i0�̂i1 (12)

�̂ik = f1 + exp[(h�=5 � ĝ(zi = k; w0
i
̂p))=h

�=4]g�1; k = 0; 1 (13)

where 0 < � < a and 
̂p is a consistent preliminary estimate which converges at rate N�1=3.
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If 
 were used instead of the preliminary estimate, the gradient would depend on derivatives

of � , and this could lead to technical problems2. To get the preliminary estimates, we use

Manski's (Manski 1975) Maximum Score Estimator (MSE) that maximizes the following

function.

S(
) = N�1
NX
n=1

[2I(zi = 1)� 1]I(w0
i
 � 0) (14)

Under certain conditions on the kernel function and bandwidth, this estimator is consistent

and asymptotically normal. The kernel function should satisfy the following conditions:

Z
K[u]du = 1 (15)

K[u] = K[�u] (16)

Z
u2K[u]du = 0 (17)

fj@rK[u]=@urj;
Z
j@rK[u]=@urjdug < c(r = 0; 1; 2; 3; 4) (18)

We use the following kernel function which is of order four3.

K[u] = 3=2 � k[u]� 1=2 � u2 � k[u] (19)

where k[u] is the standard normal density function. The bandwidth parameter h should lie

2For a more in depth discussion see (Klein & Spady 1993)
3The order of a kernel function is its �rst nonzero moment
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between N�1=6 and N�1=8. Then

p
N(
̂ � 
0) � N(0;�) (20)

� = E

 "
@P

@


# "
@P

@


#0 "
1

P (1� P )

#!�1

(21)

and � can be consistently estimated as in White (White 1982).

�̂ = A(
̂)�1B(
̂)A(
̂)�1; (22)

A(
̂) = N�1
X

@2Q(
̂)=@
i@
j; (23)

B(
̂) = N�1
X

@Q(
̂)=@
i@Q(
̂)=@
j (24)

3.2 Ichimura's Estimator

Ichimura's estimator is a minimum distance estimator and minimizes the expected condi-

tional variance of zi given w0
 . The intuition behind it is as follows. The variation in z

has two sources, w0
 and v. Along w0
 = c where c is a constant, the only variation in z

is because of the variation in v. It is thus natural to try and identify 
 by minimizing the

conditional variance. The estimator minimizes the following function:

J(
) = N�1
NX
i=1

(zi � Êi(
))
2 (25)
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where Êi(
) is a kernel estimator for E(zijw0
i
) given by equation 26 below.

Êi(
) =

P
j 6=i zjK[

w0

i
�w0

j


h
]P

k 6=iK[
w0

i

�w0

k



h
]

(26)

If the kernel function and the bandwidth are chosen appropriately, the estimator has the

following asymptotic distribution:

p
N(
̂ � 
) � N(0;��1�(�0)�1) (27)

��1�(�0)�1 can be consistently estimated by:

N

"X
i

@Êi(
̂)

@

(
@Êi(
̂)

@

)0
#�1X

i

(zi � Êi(
̂))(zi � Êi(
̂))
0@Êi(
̂)

@


 
@Êi(
̂)

@


!0 "X
i

@Êi(
̂)

@

(
@Êi(
̂)

@

)0
#�1

(28)

Neither of the two estimators allow for a constant term in w0
i
. It is further necessary to

place a restriction on parameters for identi�cation, for example set the �rst parameter to a

scalar jcj.

3.3 Powell's Estimator

Given 
̂, � in the outcome equation are estimated by comparing the pairs of observations

for which the estimated indices are close.

yi � yj = (wi � wj)
0� + (�i � �j) (29)
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�̂ can be estimated by weighted least squares regression using 1=hK[(wi�wj)
̂=h] as weights.

The estimates are
p
n-consistent if the kernel function,K[:], and the bandwidth, h, are chosen

appropriately. We use the same kernel function and bandwidth as in the Klein and Spady

estimator. Powell (Powell 1987) derives the covariance matrix. Let

� = g(w0
i
)(wi � E(wijw0

i
))ui (30)

where g(w0
i
) is the density of the single index,


 = E[�0(w0
i
)g(w

0
i
)(wi � E(wijwi
))

2] (31)

and

� = E[g(w0
i
) (wi � E(wijw0

i
)) (wi � E(wijw0
i
))

0]: (32)

Also suppose that 
̂ can be written as


̂ = 
0 + 1=N
NX
i=1

 (zi; wi; 
0) + op(N
�1=2); (33)

such that E( (zi; wi; 
0)) = 0 and E( (zi; wi; 
0)
2) <1. Then

p
n(�̂ � �) � N(0; V ) (34)
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where

V = ��1[E(��0)� 
E( �0)� E(� 0)
0 + 
E(  0)
0][��1]0: (35)

� can be consistently estimated by:

1=n
nX

i=1

ĝ(w0
i
̂)(wi � Ê(wijw0

i
̂)) (wi � Ê(wijw0
i
̂)) (36)

where ĝ(w0
i
̂) and Ê(wijwi
̂) are consistent estimators of g(w

0
i
) and E(wijw0

i
) respectively.


 can be consistently estimated by the following:

1=n
nX

i=1

�̂0(w0
i
̂)ĝ(w

0
i
̂)(wi � Ê(wijw0

i
̂))(wi � Ê(wijw0
i
̂))

0 (37)

E(��0) can be consistently estimated by:

1=n
nX

i=1

ĝ(w0
i
̂)

2(wi � Ê(wijw0
i
̂))(wi � Ê(wijw0

i
̂))
0�̂2 (38)

where

�̂2 = 1=nû0û = 1=n(y � w�̂ � �̂(w
))0(y � w�̂ � �̂(w
)) (39)

�̂(w0
i
) = Ê(yijw0

i
)� Ê(wijw0
i
)�̂ (40)
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Ê(yijw0
i
) and Ê(wijw0

i
) are kernel estimators of the form in (26). E( �0)0 = E(� 0) can be

consistently estimated by:

(1=n
nX

i=1

ĝ(w0
i
̂)(wi � Ê(wijw0

i
̂))ûi) ̂(i) (41)

For 
̂ based on Ichimura's technique

 (i) = 2��1(zi � Êi(
0))
@Êi(
0)

@

(42)

E( (i) (i)0) =
4��1�(�0)�1

N
(43)

For 
̂ based on Klein and Spady

 (i) = �
@Qi(
0)

@

(44)

E( (i) (i)0) =
�

N
(45)

4 Discussion of Results

In this section we discuss our results. The section is organized in two parts. First parameter

estimates and predictions for the selection stage are presented and compared. The normality

assumption is tested and rejected. Further the results are found to be sensitive to the
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semiparametric technique used. Then the second-stage estimates are discussed.

4.1 First-stage estimates

Results of �rst-stage estimates are presented in Table 1. For identi�cation the coe�cient

of the weather dummy was set to its probit estimate. The bandwidth parameter h was set

to 0.3. If the disturbances for the selection equation are normally distributed, the probit

estimates and the semiparametric estimates should be \close". The following test statistic

can be used to test this. If the probit model is correct :

kX
i=1

0
@ 
̂prbti � 
̂spi
�
̂prbti �
̂spi

1
A � �2(k) (46)

where prbt and sp stand for probit and semiparametric estimates respectively. The test

statistic for the K&S estimates and probit estimates is 64.8121 which is above the critical

values for �2(6). The test statistic for the Ichimura estimates is 5708.441. So the assump-

tion of normal disturbances in the selection equation is rejected by both semiparametric

estimators.

Notable di�erences between the parameter estimates are the signs of the signi�cant coe�-

cients on the 
ag dummy and the age variable. In all three estimation techniques, these

coe�cients are signi�cant but the Ichimura estimates have di�erent signs. The size variable

is only signi�cant for K&S estimates. The Ichimura technique also produces a signi�cant

negative coe�cient on the improper maintenance dummy. These di�erences in parameters

also yield di�erent predictions. These are shown in Table 2. The Ichimura estimates produce
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Table 1: Estimation Results for Oil Spills
Standard errors are in parenthesis

Explanatory Variables Probit Klein & Spady Ichimura
Type of Accident Variables
GRNDING -1.8986*** -0.4916*** -5.6454***

(0.1242) (0.0189) (0.2828)
COLLIS -1.4921*** -0.4791*** -7.9669***

(0.1364) (0.0208) (0.4026)
WEATHER -0.0503 -0.0503 -0.0503

(0.2049) (0.0631) (0.688)
IMPMAINT 0.0068 0.0304 -1.3397***

(0.2057) (0.0599) (0.1816)
Vessel Characteristic Variables
SIZE -1.7e-03 -1.7e-03*** -1.12e-03

(1.15e-03) (0.000268) (0.001252)
AGE 0.0103*** 0.0038*** -0.0608***

(0.0031) (0.0008) (0.00517)
US -0.7598*** -0.3290*** 2.9007***

(0.0677) (0.0437) (0.0201)
Constant 0.3069*** NA NA

(0.0784)
N 2263 2263 2263
Log Likelihood -1178.2977 -105.6232 NA
*** signi�cant at the 1% level.
** signi�cant at the 5% level.
* signi�cant at the 10% level.
Note: The probit model was also estimated without a constant and this restriction
was tested and rejected by a likelihood ratio test. The value of the natural logarithm
of the likelihood function with no constant term is -1186.0421.
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Table 2: Probability of a Spill for Di�erent Vessels
US 
ag vessels are in parenthesis

Probit K & S Ichimura
Base Case1 0.6580 0.5224 0.6953

(0.3622) (0.4153) (0.3310)
Large Vessel 0.6146 0.4879 0.6991
(100 000 tons) (0.3197) (0.3814) (0.3377)
Old Vessel 0.6950 0.5313 0.2966
(25 years) (0.4014) (0.4278) (0.4421)
GRNDING 0.0679 0.3700 0.0315

(0.0122) (0.3604) (0.0367)
COLLIS 0.1389 0.3729 0.1624

(0.0325) (0.3578) (0.0629)
WEATHER 0.6393 0.5086 0.6980

(0.3434) (0.3997) (0.3350)
IMPMAINT 0.6605 0.5296 0.9489

(0.3674) (0.4252) (0.3159)
1 15 year old vessel that weighs 32000 gross tons

a lower probability of spill conditional on an accident for old foreign 
ag tankers, which con-


icts with the other results. The other estimates indicate that older vessels have a slightly

higher probability of causing a spill, and US 
ag tankers have a much lower probability of

causing a spill. The Ichimura estimates also produce a very high probability of a spill for

accidents caused by improper maintenance for foreign 
ag tankers which is not replicated

by the K&S and probit estimates.

Figures 1- 3 show the predicted values for the sample. It is interesting to note that the range

of predictions based on K&S estimates is between 0:35 and 0:55, quite narrow in comparison

to predictions from the other two methods. Ichimura's estimates produce probabilities that

range from 0 to 14 and predictions based on probit range from 0 to 0:8.

4Ichimura estimates actually produce some negative probabilities
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Table 3: Estimation Results for Oil Spills
Standard errors are in parenthesis

Dependent Variable: Log Spill Size
Explanatory Variables Normal Errors Kernel Estimates

Klein and Spady Ichimura
Type of Accident Variables
GRNDING 24.3496*** 6.4140 NA

(6.2962) (26.2618) NA
COLLIS 17.3673*** 4.6331 -4.8187

(4.8117) (27.1600) (14.4113)
WEATHER 0.3504 -0.4304 -0.2429

(1.8171) (18.8552) (20.4737)
IMPMAINT -0.0909 -0.0894 -1.6599

(1.7425) (16.7959) (59.1457)
Vessel Characteristic Variables
SIZE 0.02* 0.0057 0.0089

(0.000012) (0.1184) (0.1362))
AGE -0.0747* 0.0192 0.0149

(0.0407) (0.3085) (2.3069)
US 4.8048** -1.2915 -0.3569

(2.1223) (10.7985) (110.6544)
Constant 10.6039*** NA NA

(2.7277)
lambda -12.5212*** NA NA

(4.2647)
N 784 784 784
*** signi�cant at the 1% level.
** signi�cant at the 5% level.
* signi�cant at the 10% level.

4.2 Second-stage estimates

The second-stage estimates are presented in Table 3. The estimated weights for grounding

and collision incidents were very close when Ichimura estimates were used for the �rst-stage

estimates so the grounding dummy was dropped. These results can be found in Table 4.

Table 4 compares the e�ect of accident types, as well as vessel characteristics such as age

and size, on spill size for foreign and US 
ag vessels. The base case is a 15 year old tanker
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Table 4: Spill Size
US 
ag vessels are in parenthesis

Normal Errors K & S Ichimura
Base Case 1 22.9873 24.9679 23.8301

(7.1430) (6.8328) (6.1571)
Large Vessel 40.70 37.1898 43.2827
(100 000 tons) (9.03) (9.7575) (11.4493)
Old Vessel 21.4466 30.0644 15.9136
(25 years) (8.2923) (8.3318) (9.2154)
GRNDING 29373.9633 14420.4811 NA

(855.6440) (1404.7197) NA
COLLIS 1873.5230 2443.5233 1809.7720

(73.3556) (291.2212) (142.5253)
WEATHER 23.1565 16.3372 18.6044

(6.4801) (4.3936) (4.8760)
IMPMAINT 21.9800 22.7211 17.7674

(6.9259) (6.2811) (1.3880)
1 15 year old vessel that weighs 32000 gross tons

that weighs 32,000 tons. Mean spill size for the base case ranges between 23 gallons and

25 gallons for all methods for foreign 
ag tankers. For US 
ag tankers the range is even

narrower, 6 to 7 gallons. Mean spill size for large tankers is twice as much, around 40

gallons for foreign 
ag tankers. Old vessels are predicted to have smaller spills by Ichimura

and under the assumption of normality, but bigger spills if we use K&S estimates for the

selection e�ect. For US 
ag tankers, all methods show an increase in spill size with age.

Spills due to improper maintenance and adverse weather are smaller.

Although there are qualitative di�erences, the predicted mean spill sizes do not di�er in a

meaningful way for policy purposes in any of the above cases. For spills due to grounding

and collision, they do. Mean spill for for grounding is almost 30,000 gallons for foreign

tankers with the normality assumption and only half that amount based on semiparametric

methods. Estimates of mean spill size for spills due to collision range between 1800 to 2500
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gallons. These di�erences are large enough to make a di�erence for policy purposes. So

it is important to identify which of the techniques produces more reliable estimates. The

normality assumption is too restrictive and is rejected by both the semiparametric techniques.

Among the semiparametric techniques we prefer to use the K&S estimator for the �rst stage.

Ichimura has not studies how the bandwidth and the kernel function should be chosen. The

choice does not matter for asymptotic properties, but could matter in small samples.

5 Conclusion

In this paper we investigate the bias due to misspeci�cation of the distribution of the error

terms in a sample selection model for oil tanker spills. We �nd that parameter estimates are

sensitive to distributional assumptions.

Major �ndings that are qualitatively supported by all methods are the following. Groundings

and collisions result in larger spills if there is a spill, but the likelihood that there will be a

spill due to a grounding or collision is very low. Tanker size has only a marginal e�ect on the

probability of a spill and a dubious e�ect on spill size. US 
ag tankers and new tankers have

a lower probability of causing spills, compared to foreign 
ag and old tankers, respectively.

It would be useful to investigate how sensitive Ichimura's estimator is to di�erent bandwidths

and kernel functions for this sample. If it is found to be sensitive, this would provide further

support for choosing K&S estimates over those of Ichumura.
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A Linear Representation of First Stage Estimates

A.1 Ichimura


̂ = 
0 � ��1@J(
0)

@

+ op(n

�1=2) (47)

@J(
0)

@

= �1=n

nX
i=1

2(zi � Êi(
̂0))
@Êi(
̂0)

@

(48)

A.2 Klein and Spady


̂ = 
0 +�1=n
nX

i=1

�̂ir̂iŵi + op(n
�1=2) (49)

(50)

r̂i =
zi � P̂i

ĝ(
0) + �̂(
0)P̂i(1� P̂i)
(51)

ŵi = (ĝ(
0) + �̂(
0))
@P̂

@

(52)


̂ = 
0 +�1=n
nX

i=1

@Qi(
0)

@

+ op(n

�1=2) (53)

(54)

19



References

Cosslett, S. 1991. Semiparametric estimation of a regression model with sample selectivity.

In Barnett, W.; Powell, J.; and Tauches, G., eds., Nonparametric and Semiparametric

Methods in Econometrics and Statistics, 175{197.

Heckman, J. 1979. Sample selection bias as a speci�cation error. Econometrica 47:153{161.

Ichimura, H. 1987. Estimation of Single Index Models. Ph.D. Dissertation, MIT.

Klein, R., and Spady, R. S. 1993. An e�cient semiparametric estimator for binary response

models. Econometrica 61(2):387{421.

Manski, C. F. 1975. The maximum score estimator of the stochastic utility model of choice.

Journal of Econometrics 3:205{228.

Mroz, T. A. 1987. The sensitivity of an empirical model of married women's hours of work

to economic and statistical assumptions. Econometrica 55:765{799.

Newey, W. K.; Powell, J.; and Walker, J. 1990. Semiparametric estimation of selection

models: Some empirical results. American Economic Association Papers and Proceedings

324{328.

Powell, J. 1987. Semiparametric estimation of bivariate latent variable models. Working

Paper 8704, SSRI, University of Wisconsin-Madison.

White, H. 1982. Maximum likelihood estimation of misspeci�ed models. Econometrica

50:1{25.

20



Spill = 0

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8

Spill = 1

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 0.2 0.4 0.6 0.8

Figure 1: Probit Predicted Probabilities
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